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Abstract

The modeling of discrete-time dynamical systems under uncertainty is an important
endeavor, with applications in a wide range of fields. We propose to investigate new
models and algorithms for inference, structure and parameter learning that extend our
capabilities of modeling such systems, with a focus on models for real-valued sequen-
tial data. Our work is grounded in existing generative models for dynamical systems
that are based on latent variable representations.Hidden Markov Models(HMMs) and
Linear Dynamical Systems(LDSs) are popular choices for modeling dynamical sys-
tems because of their balance of simplicity and expressive power, and because of the
existence of efficient inference and learning algorithms for these models.

Recently proposedpredictivemodels of dynamical systems, such as linearPredic-
tive State Representations(PSRs) andPredictive Linear Gaussians(PLGs) have been
shown to be equally powerful as (and often more compact than) HMMs and LDSs. In-
stead of modeling state by a latent variable, however, predictive models model the state
of the dynamical system by a set of statistics defined onfuture observable events. This
dependence on observable quantities and avoidance of latent variables makes it eas-
ier to learn consistent parameter settings and avoid local minima in predictive models,
though they have other problems such as a paucity of well-developed learning algo-
rithms. However, one interesting class of algorithms for learning models such as LDSs
and PSRs is based on factoring matrices containing statistics about observations using
techniques such as thesingular value decomposition(SVD). This class of algorithms is
especially popular in the control theory literature, under the namesystem identification.

A restriction of most current models is that they are restricted to either discrete,
Gaussian, or mixture-of-Gaussian observation distributions. Recently, Wingate and
Singh (2007) proposed a predictive model that aims to generalize PLGs to exponential
family distributions. This allows us to exploit structure in the observations using ex-
ponential family graphical models. It also exposes us to problems of intractable infer-
ence, structure and parameter learning inherent in conventional algorithms for graphi-
cal models, necessitating the use of approximate inference techniques.

Our goal is to formulate models and algorithms that unify disparate elements of this
set of tools. The ultimate aim of this thesis is to devise predictive models that unify
HMM-style and LDS-style models in a way that captures the advantages of both and
generalize them to exponential families, and to investigate efficient and stable structure
and parameter learning algorithms for these models based on matrix decomposition
techniques.
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Figure 1: Directed graphical model for HMMs and LDSs. Shaded nodes are observed,
others hidden.

1 Introduction

The modeling of discrete-time dynamical systems under uncertainty is an important
endeavor, with applications in a wide range of fields such as engineering, economet-
rics and financial modeling, stock market prediction, speech and language modeling,
bioinformatics and others. We propose to investigate new models and algorithms for
inference, structure and parameter learning that extend our capabilities of modeling
such systems, with a focus on models for real-valued sequential data. Our work is
grounded in existing generative models for dynamical systems that are based on latent
variable representations of the observed data, where the distribution of observations
is assumed to depend on an underlying latent variable that evolves stochastically over
time. This allows the model to represent thestateof the system, effectively endowing
it with infinite memory by allowing observations to have an effect arbitrarily far into
the future via the latent state.Hidden Markov Models(HMMs) (defined in Section 2.1)
andLinear Dynamical Systems(LDSs) (defined in Section 2.2) are popular choices
for modeling dynamical systems because of their balance of simplicity and expressive
power, and because of the existence of efficient inference and learning algorithms for
these models. Both of them model the joint distribution of latent variables and obser-
vations by factoring it according to the directed graphical model shown in Figure 1.
Different assumptions about the latent variable lead to either the HMM or the LDS,
each with distinct characteristics, advantages and disadvantages. Roweis and Ghahra-
mani (1999) reviews HMMs and LDSs in the larger context oflinear Gaussian models.
Relevant previous work done on these models is described in Sections 3.1 and 3.2.

Recently proposedpredictivemodels of dynamical systems, such as linearPredic-
tive State Representations(PSRs) andPredictive Linear Gaussians(PLGs) (defined in
Section 2.3 and described in Section 3.5), have been shown to be equally powerful as
(and often more compact than) HMMs and LDSs. Instead of modeling state by a latent
variable, however, predictive models model the state of the dynamical system by a set
of statistics defined on future observable events. This dependence on observable quan-
tities and avoidance of latent variables makes it easier to learn consistent parameter
settings and avoid local minima in predictive models, though they have other problems
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Figure 2: A. The belief state of an N-state HMM resides in the N-simplex (here N=3).
B. The state vector of a stable N-dimensional LDS resides in some N-dimensional
ellipsoid that its dynamics matrix maps to itself (here N = 2).

such as a paucity of well-developed learning algorithms. The state space where the
PSR state vector (which is not a latent variable, but rather a vector of coefficients which
yields the core test probabilities when combined with the PSR parameters) resides is
also not well understood, unlike the HMM and LDS state spaces. PSRs generalize
discrete-observation HMMs, and PLGs subsume the LDS model. Recently, Wingate
and Singh (2007) proposed a predictive model that aims to generalize PLGs to expo-
nential family distributions. Our goal is to formulate models and algorithms that unify
disparate elements of this set of tools. The ultimate aim of this thesis is to devise pre-
dictive models that unify HMM-style and LDS-style models in a way that captures the
advantages of both and generalize them to exponential families, and to investigate ef-
ficient inference, structure and stable parameter learning algorithms for these models
(Section 5.3).

Though seemingly disparate beyond the graphical model they share, HMMs and
LDSs are related very closely. The joint distribution of the latent variable and observa-
tion in both models is a member of the exponential family, with different choices of the
link function. Choosing theN -dimensional generalization of the logit function leads to
the multinomial distribution over discrete-valued latent and observable variables, as in
HMMs. On the other hand, choosing the identity function leads to the Gaussian distri-
bution over real-valued latent and observable variables as in LDSs. When performing
inference in these models, the observation update and transition update can be viewed
as being respectivelylinear in the natural parameters and expectation parameters of the
corresponding distributions.

All other differences between these models stem from this difference in choice of
link function. For anN -state HMM, since the latent variable distribution is multino-
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Figure 3: Frames from typical dynamic textures of steam rising (A) and a fountain
flowing (B). Dynamic textures are videos that exhibit certain stationarity properties
over time which can be captured by low-dimensional representations such as Linear
Dynamical Systems.

mial, the belief state lies in theN -dimensional simplex (Figure 2(A)). The form of the
transition matrixfor HMMs must keep the belief state in the simplex in order to be
stable (or even be a valid HMM), and hence is chosen to be astochasticN ×N matrix
with each row encoding a probability distribution over states. Since the convex combi-
nation of two stochastic matrices is a stochastic matrix due to convexity of the simplex,
the space of valid transition matrices is clearly convex. We have investigated HMM
variants (Siddiqi & Moore, 2005) with additional constraints on the transition matrix
(termed Dense-Mostly-Constant (DMC) transition matrices) that allow for more effi-
cient inference and learning as well as larger state spaces while retaining much of the
expressive power of unconstrained HMMs (Section 4.1). On the other hand, for stable
LDSs, since the latent variable is Gaussian, the state vector lies in someN -dimensional
ellipsoid containing the origin (Figure 2(B)) that gets mapped into itself, and hence the
dynamics matrix must be astableN ×N matrix in the sense of its largest eigenvalue
being at most unit magnitude. This ellipsoid is unknowna priori. This condition for a
stable dynamics matrix is more difficult to enforce than the corresponding condition for
valid transition matrices, since, though the space of matrices that map a particular el-
lipse into itself (and are hence stable) is convex, the space ofall stable matrices, which
is the union of all such convex spaces, is non-convex. We have proposed (Siddiqi
et al., 2007a) a novel method for learning LDSs from data while enforcing stability
in the dynamics matrix with application to modeling dynamic textures of video data
(Section 4.3) of the kind in Figure 3.

The resulting difference in state spaces endows HMMs and LDSs with their relative
advantages and disadvantages. Consider the state space of an LDS learned from data.
The real-valued latent variable in an LDS allows smooth evolution of the state variable
over the entire state space. This is often crucial, as in the case of dynamic texture
modeling, where smooth variations in the generated video can only be modeled by
smooth evolution in the latent variable. However, conventional LDSs can only model
unimodal observation distributions. In particular, the log of the PDF must be concave
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Figure 4: A. A frame from the clock pendulum video. B. A frame from the video
resulting from simulating from a stable LDS which falls into invalid state configura-
tions, resulting in multiple superimposed pendulum images. C. The state sequence for
this dynamic texture clearly evolves in a non-convex state space. D. Unlike LDSs,
HMMs trained on the state sequence can represent non-convex state spaces by tiling it
with Gaussian densities, however they suffer from non-smooth evolution of the state
variable which is essential to model smoothly varying observations such as those in
dynamic texture videos.

as a function of the observations. For example, if an LDS predicts that imageA is a
likely observation at stept, and that imageB is a likely observation at stept, then it
must also predict that the image(A + B)/2 is a likely observation at stept. This is
a limiting drawback, since many real systems do not have this property: for example,
if A is an image of a clock with its pendulum in one position, andB is an image of a
clock with its pendulum in another position,(A + B)/2 will be an inconsistent image
with a half-intensity pendulum in both positions. Figure 4(B) shows an example of an
invalid image produced by simulation from a conventional LDS, with the pendulum
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blurred across multiple positions.
Given the LDS’s linear observation model, the only way to produce a non-unimodal

observation distribution is to start from a non-unimodal latent variable distribution, as
shown in Figure 4(C). One way to model such a non-unimodal latent variable distribu-
tion is with a mixture of Gaussians, as shown in Figure 4(D). Unlike the original LDS,
the mixture shown in Figure 4(D) excludes most of the latent states in the interior of the
region bounded by the solid curve. (These latent states correspond to invalid images
like the one in Figure 4(B).)

If we pick a fixed set of centers and covariances for the latent-state mixture distri-
bution, and vary only the mixture weights, the resulting model is essentially an HMM:
each discrete hidden state corresponds to a single ellipse. This HMM correctly pre-
dicts that the average of two likely images can be unlikely. Though conventional HMM
learning algorithms are prone to local minima and are unlikely to discover the optimal
state configuration even if a suitable value forN were known, there exist algorithms for
choosingN while learning parameters and avoiding local minima. We devised a novel
method for structure and parameter learning in Gaussian-based HMMs called STACS
(Siddiqi et al., 2007b) that outperforms previous methods in efficiency and accuracy
(Section 4.2). STACS simultaneously searches the space of structure parameters (i.e.
the number of states) and model parameters in a greedy fashion using an EM-style in-
ner loop to efficiently learn a model of appropriate dimensionality along with locally
optimal parameter settings.

However, the disadvantage of HMMs is their inability to model smooth evolution
of the latent variable, which can be essential for some dynamical systems. In the case
of the clock pendulum video, HMMs would result in a model whose simulated videos
contain valid pendulum images but abrupt, jerky transitions.

A natural question at this point, which this thesis aims to explore, is whether it is
possible to formulate a model that can represent a smoothly evolving state variable like
LDSs but can still handle non-Gaussian distributions over latent and observable vari-
ables like HMMs. This would effectively unify HMMs and LDSs and thus obviate the
need for choosing between these models for the task of modeling dynamical systems.

Hybrid models unifying HMMs and LDSs have been investigated before. We
briefly review this literature in Section 3.4. The final model we propose will differ
from existing models in being easier to learn via decomposition-based methods (de-
scribed below), and more general in allowing arbitrary exponential family distributions
over the data.

A notable difficulty with learning latent variable models from data is local minima
problems inherent in learning algorithms such as EM which are designed to maxi-
mize log-likelihood. In addition, there is the problem of model unidentifiability in-
herent in latent variable models. Finally, there is also the issue of model selection.
An alternative set of methods for learning LDSs as well as PSR-style models is based
on matrix decomposition using techniques such as theSingular Value Decomposition
(SVD)on matrices containing the observations or statistics about them. The matrices
are designed so as to be inherently low-rank in the noiseless case, with rank equal to
dimensionality of the system. With enough data at hand, this allows us to simultane-
ously learn parameters and perform model selection by choosing the dimensionality of
the model based on singular values of the matrix. The global convergence and lack
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of local minima in SVD and related decomposition algorithms makes them attractive
alternatives to EM-based algorithms for parameter learning. For LDSs this approach
is termedsubspace identification(reviewed in Section 3.3) and is well known in the
controls and systems literature. The matrix chosen for decomposition is theHankel
matrix of stacked observations. For PSRs, the conventional model represents a set of
probabilities over a large set of core tests as the sufficient statistics of the system. In
fact, one conceptual representation of a PSR is theSystem-Dynamics matrix(Singh
et al., 2004), a doubly-infinite matrix consisting of conditional probabilitiesp(ti | hi)
of teststi (futures) given historieshi (pasts) for all possible histories (rows) and tests
(columns). The rank of a dynamical system is shown to be equal to the rank of its
corresponding system-dynamics matrix. Subspace-ID-style matrix decomposition can
be used to learn low-dimensional PSRs (Rosencrantz & Gordon, 2004). However, the
learning algorithms proposed for TPSRs are inefficient in their use of data, and do not
attempt to learn stable parameters, both of which we will address (Section 5.1). A logi-
cal next step is to formulate a decomposition-based algorithm to learn low-dimensional
PLGs (Section 5.2) as well as decomposition-based algorithms for learning the unified
model we are proposing to develop (Section 5.4).

2 Notation and Definitions

Let X = {xt}T
t=1 denote the set of latent states over a sequence ofT timesteps, and

Y = {yt}T
t=1 be the set of real-valued observations. We assume a single training

sequence for ease of presentation, though all algorithms described can be easily gener-
alized to the multiple-sequence case.

2.1 Hidden Markov Models

Hidden Markov Modelsare a popular tool for modeling the statistical properties of
observation sequences in domains where the observations can be assumed to be indica-
tive of an underlying latent state sequence. In HMMs, the latent variables{xt}T

t=1 are
discrete-valued, taking on one ofN values whereN is the number of states. An HMM
is characterized by the following parameters:

1. N , the dimensionality of the latent variable.

2. M , the dimensionality of the real-valued observation.

3. A = {aij}, the N × N state transition matrix, whereaij = P (xt+1 = j |
xt = i). A is astochastic matrix, with each of its rows constituting a probability
distribution over the set ofN states.

4. B = {bj(a)}M
a=1, the observation probability distribution in each statej, where

bj(a) = P (yt = a | yt = j). B can be considered aT ×N matrix. In practice,
multinomials (for discrete-valued data), Gaussians and mixtures of Gaussians
(for real-valued data) are commonly used as observation models.

5. π = 〈πi〉, the initial state probability distribution, whereπi = P (y1 = i).
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The complete set of parameters is indicated byλ = (A,B, π).
The Viterbi algorithm (Viterbi, 1967) is a dynamic programming method for infer-

ring the globally optimal path through state space given a sequence of observations.
Parameter learning is most commonly carried out using Baum-Welch (Baum, 1972)
which is an EM algorithm (Dempster et al., 1977) for finding a local optimum of the
incomplete data likelihood.

2.2 Linear Dynamical Systems

Uncontrolled, discrete-timeLinear Dynamical Systemscan be described by the follow-
ing two equations:

xt+1 = Axt + wt

yt+1 = Cxt + vt (1)

Time is indexed by the discrete indext. Herext denotes the real-valued latent variable
in Rn, yt the observations inRm, andwt andvt are zero-mean Normally distributed
state and observation noise variables. Assume the initial statex(0) = x0. The pa-
rameters of the system are the dynamics matrixA ∈ Rn×n, the observation model
C ∈ Rm×n, and the noise covariance matricesQ andR. Note that we are learning
uncontrolledlinear dynamical systems though, as in previous work, control inputs can
easily be incorporated into the objective function and convex program.

Let {λi(M)}M
i=1 denote the eigenvalues of a square matrixM in decreasing order

of magnitude,{νi(M)}M
i=1 the corresponding unit-length eigenvectors, and define its

spectral radiusρ(M) ≡ |λ1(M)|. An LDS with dynamics matrixA is stableif all of
A’s eigenvalues have magnitude at most1, i.e.ρ(A) ≤ 1.

Linear dynamical systems can also be viewed as probabilistic graphical models.
The standard LDS filtering and smoothing inference algorithms (Kalman, 1960; Rauch,
1963) are instantiations of the junction tree algorithm for Bayesian Networks (see, for
example, (Murphy, 2002)). Standard algorithms for learning LDS parameters learn
locally optimal values by gradient descent (Ljung, 1999), Expectation Maximization
(EM) (Ghahramani & Hinton, 1996) or least squares on a state sequence estimate ob-
tained by subspace identification methods (Van Overschee & De Moor, 1996).

2.3 Predictive Models

Predictive State Representations(Littman et al., 2002; Singh et al., 2004) represent
state in dynamical systems by tracking a set of predictions about future outcomes.
Define atestto be a sequence of one or more observations in the future, and ahistory
to be a sequence of observations since the beginning of time until the current timestep.
N -dimensional PSRs for discrete-valued data define their state to be the probabilities of
a set ofN core tests. The core tests are chosen such that their probabilities constitute
a sufficient statisticfor the state of the system, in the sense that the probabilities of
all possible tests are linear combinations of core test probabilities. The general PSR
definition does not specify what kind of function of the sufficient statistic yields other
test probabilities, and nonlinear PSRs have been examined to some extent (Rudary &
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Singh, 2003). However, inlinear PSRs, which most of the literature focuses on and
which we will limit ourselves to, the probability of any test is alinear function of the
core test probabilities at any timestep. We also restrict ourselves to the uncontrolled
case, though controlled PSRs can be used for planning as an alternative to POMDPs.
Tracking the core test belief in linear PSRs is an analogous operation to tracking the
belief state in discrete HMMs; the fact that linear PSRs can provably model a larger
class of dynamical systems than HMMs is because PSR model parameters need not
be non-negative, unlike discrete HMM parameters (Singh et al., 2004). Jaeger (2000)
presents an example of a3-dimensional linear PSR that cannot be modeled by any finite
HMM, in a model analogous to PSRs called theObservable Operator Model(OOM).

Predictive Linear Gaussians(Rudary et al., 2005) generalize the idea of PSRs to
representing state using theparameters of a distributionover future outcomes. PLGs
are predictive models of real-valued data that assume a joint Gaussian distribution over
the nextN observations, and assume this distribution to be a sufficient statistic for the
distribution of all future observations. In addition, the(N + 1)st future observation is
assumed to be a noisy linear combination of theN before it. The state is tracked over
time byextendingto the(N+1)st future observation andconditioningon the1st future
observation. PLGs provably subsume LDSs, are as compact as them and have fewer
parameters. Like PSRs, PLGs also allow a consistent parameter estimation algorithm,
though one which is not guaranteed to return valid parameters.

3 Background and Related Work

In this section we review past and current work from the literature that is related to
the work proposed in this thesis, and puts it in context. The field is very large and
it is impossible to mention all significant results in the space at hand; hence what
follows is a selection of the most important and relevant lines of research. There are
several survey and overview works on sequential data modeling using the models we
discuss. Roweis and Ghahramani (1999) presents HMMs and LDSs as being variants of
the same linear Gaussian model, along with several other models. Ghahramani (1998)
derive HMMs and LDSs as different kinds of DBNs. A more detailed and in-depth
survey of the DBN view of sequential data modeling can be found in Murphy (2002).

3.1 Hidden Markov Models

Introduced in the late 1960s, HMMs have been used most extensively in speech recog-
nition (Rabiner, 1989; Bahl et al., 1983), language modeling and bioinformatics (Krogh
et al., 1994) but also in diverse application areas such as computer vision (Sunderesan
et al., 2003) and information extraction (Seymore et al., 1999). A classic tutorial on
HMMs can be found in the work of Rabiner (1989). More recently, HMMs and their
algorithms have been re-examined in light of their connections to Bayesian Networks,
such as in Ghahramani (2001). Many variations on the basic HMM model have also
been proposed, such as coupled HMMs (Brand et al., 1997) for modeling multiple in-
teracting processes, Input-Output HMMs (Bengio & Frasconi, 1995) which incorporate
inputs into the model, hierarchical HMMs (Fine et al., 1998) for modeling hierarchi-
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cally structured state spaces, and factorial HMMs (Ghahramani & Jordan, 1995) that
model the state space in a distributed fashion.

Felzenszwalb et al. (2003) recently proposed fast algorithms for a class of HMMs
where the states can be embedded in an underlying parameter space and the transition
probabilities can be expressed in terms of distances in this space. In comparison, our
work on fast inference and learning in HMMs (Siddiqi & Moore, 2005) introduces
a class of transition models that are applicable to arbitrary state spaces. Assuming a
sparse transition matrix is another way to speed up these algorithms, and is an under-
lying assumption in many cases. This has two drawbacks. Firstly, this is an overly
restrictive assumption for many problem domains. Secondly, it requires the sparse
structure to be known or extracted in advance. Other approaches for fast HMM algo-
rithms include the work by Murphy and Paskin (2002), which treats HMMs as a special
kind of Dynamic Bayesian Network and proposes faster inference algorithms for hier-
archical HMMs, as well as Salakhutdinov et al. (2003) which derives an alternative
learning algorithm for HMM parameters under conditions when EM is slow.

There has been extensive work on HMM model selection. However, most of this
work is either tailored to a specific application or is not scalable to learning topologies
with more than a few states. The most successful approaches are greedy algorithms
that are either bottom-up (i.e., starting with an overly large number of states) or top-
down (i.e., starting with a small or single-state model). One disadvantage of bottom-up
approaches is having to know an upper bound on the number of states beforehand.
In some cases, one also faces the problem of deciding which ofN2 pairs of states
to merge. We therefore favor top-down methods for HMM model selection, espe-
cially when the number of states may be large. Among these methods, Li and Biswas
(1999) and Ostendorf and Singer (1997) are notable examples, which we compare to
in our empirical evaluations. Another top-down algorithm is the entropic prior method
of Brand (1999).

3.2 Linear Dynamical Systems

Linear dynamical systems are also known asKalman Filters(Kalman, 1960) andstate-
space models. LDSs are an important tool for modeling time series in engineering,
controls and economics as well as the physical and social sciences. Nonlinear dynami-
cal systems and their learning algorithms have also been studied, such as the extended
Kalman filter (Kopp & Orford, 1963; Cox, 1964) which linearizes the nonlinear system
around the state estimate at every step, allowing the approximate state distribution to
remain Gaussian. Ghahramani and Roweis (1999) presents an EM algorithm for learn-
ing nonlinear dynamical systems. However, we restrict our attention to linear systems.

Learning the dimensionality and parameters of LDSs is known aslinear system
identification, and is a well-studied subject (Ljung, 1999). Within this area,subspace
identification methods(Van Overschee & De Moor, 1996) have been very success-
ful. These techniques first estimate the model dimensionality and the underlying state
sequence, and then derive parameter estimates using least squares. Within subspace
methods, techniques were developed to enforce stability by augmenting the extended
observability matrix with zeros (Chui & Maciejowski, 1996) or adding a regularization
term to the least squares objective (Van Gestel et al., 2001).
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All previous methods were outperformed by Lacy and Bernstein (2002), hence-
forth referred to as LB-1. They formulate the problem as a semidefinite program (SDP)
whose objective minimizes the state sequence reconstruction error, and whose con-
straint bounds the largest singular value by1. This convex constraint is obtained by
rewriting the nonlinear matrix inequalityIn−AAT º 0 as a linear matrix inequality1,
whereIn is then × n identity matrix. Here,Â (º) denotes positive (semi-) definite-
ness. The existence of this constraint also proves the convexity of theσ1 ≤ 1 region.
This condition issufficientbut notnecessary, since a matrix that violates this condition
may still be stable.

A follow-up to this work by the same authors (Lacy & Bernstein, 2003), which we
will call LB-2, attempts to overcome the conservativeness of LB-1 by approximating
the Lyapunov inequalities2 P −APAT Â 0, P Â 0 with the inequalitiesP −APAT −
δIn º 0, P − δIn º 0, δ > 0. However, the approximation is achieved only at the cost
of inducing a nonlinear distortion of the objective function by a problem-dependent
reweighting matrix involvingP , which is a variable to be optimized. In our experience,
this causes LB-2 to perform worse than LB-1 (for anyδ) in terms of the state sequence
reconstruction error, even while obtaining solutions outside the feasible region of LB-1.

3.3 Subspace Identification

Subspace methods calculate the LDS parameters by first decomposing a matrix of ob-
servations to yield an estimate of the underlying state sequence. The most straightfor-
ward such technique is used here, see Van Overschee and De Moor (1996) for varia-
tions.

Note that the model we wish to learn isunidentifiable, i.e., several possible sets of
parameters and initial conditions can give rise to a particular observation sequence. For
any matricesA,C, Q that represent a model, an infinite number of equivalent models
can be obtained by substitutingA with SAS−1, C with CS−1, Q with SQST , and
x0 with Sx0, for any invertiblen × n matrix S. To identify a unique model (up to
permutation of rows and sign changes) from a sequence{yt}, we choose thecanonical
model, which has aC with orthonormal columns and an asymptotically diagonal state
covariance.

Let Y1:τ = [y1 y2 . . . yτ ] ∈ Rm×τ andX1:τ = [x1 x2 . . . xτ ] ∈ Rn×τ . We use
D to denote the matrix of observations which is the input to SVD. One typical choice
for D isD = Y1:τ ; we will discuss others below. (For now we assumem À n; other
choices forD allow us to relax this assumption.) SVD yields

D ≈ UΣV T (2)

whereU ∈ Rm×n andV ∈ Rτ×n have orthonormal columns{ui} and{vi}, and
Σ = diag{σ1, . . . , σn} contains the singular values. We assume the desired hidden
state dimensionalityn is determined using standard methods; for example, we could

1This bounds the top singular value by1 since it implies∀x xT (In−fAAT )x ≥ 0 ⇒ ∀x xT AAT x ≤
xT x ⇒ for ν = ν1(AAT ) andλ = λ1(AAT ), νT AAT ν ≤ νT ν ⇒ νT λν ≤ 1 ⇒ σ2

1(A) ≤ 1 since
νT ν = 1 andσ2

1(M) = λ1(MMT ) for any square matrixM .
2These inequalities hold iff the spectral radius is less than1. For a proof sketch, see (Horn & Johnson,

1985) pg. 410.
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Figure 5: A. Sunspot data, sampled monthly for200 years. Each curve is a month,
thex-axis is over years. B. First two principal components of a1-observation Hankel
matrix. C. First two principal components of a12-observation Hankel matrix, which
better reflect temporal patterns in the data.

choosen by keeping all singular values ofD above a certain threshold. In accordance
with the canonical model assumptions above, we obtain estimates ofC andX:

Ĉ = U

X̂ = ΣV T (3)

See (Soatto et al., 2001) for an explanation of why these estimates satisfy the canonical
model assumptions.̂X is referred to as theextended observability matrixin the control
systems literature; thetth column ofX̂ represents an estimate of the hidden state of
our LDS at timet. A least squares estimate ofA is obtained by solving

Â = arg min
A

∥∥AX0:τ−1 −X1:τ

∥∥2

F
(4)

where‖ · ‖F denotes the Frobenius norm. Eq. (4) asksA to minimize the error in
predicting the state at timet + 1 from the state at timet. Given the above estimateŝA
andĈ, the covariance matriceŝQ andR̂ can be estimated directly from residuals.

3.3.1 Hankel Matrices

In the decomposition above, we chose each column ofD to be the observation vector
for a single time step. Suppose that instead we setD to be a matrix of the form

D =




y1 y2 y3

y2 y3 y4

y3 y4 y5


 (5)

A matrix of this form is called ablock Hankelmatrix (Ljung, 1999). We say “d-
observation Hankel matrix of sizeτ ” to mean the data matrixD ∈ Rmd×τ with d
length-m observations per column. Stacking observations causes each state to incor-
porate more information about the future, sincex̂t now represents coefficients recon-
structingyt as well asother observations in the future. However the observation model
must now beĈ = U( : , 1 : m), i.e., the submatrix consisting of the firstm columns
of U , becauseU( : , 1 : m)x̂t = ŷt for any t, whereŷt denotes a reconstructed obser-
vation. Having multiple observations per column inD is particularly helpful when the
underlying dynamical system is known to have periodicity. For example, see Figure 5.

11



3.4 Hybrid Models

Since shortly after the advent of LDSs, there have been attempts to combine the dis-
crete transitions of HMMs with the linear dynamics of LDSs. We perform a brief re-
view of the literature on hybrid models; see Ghahramani and Hinton (2000) for a more
thorough review. Ackerson and Fu (1970) formulates a switching LDS variant where
both the state and observation variable noise models are mixture of Gaussians with the
mixture switching variable evolving according to Markovian dynamics, and derives
the (intractable) optimal filtering equations where the number of Gaussians needed to
represent the belief increases exponentially over time. They also propose an approx-
imate filtering algorithm for this model based on a single Gaussian. Shumway and
Stoffer (1993) propose learning algorithms for an LDS with switching observation ma-
trices. Bar-Shalom and Li (1993) review models where both the observations and state
variable switch according to a discrete variable with Markov transitions.Hidden Fil-
ter HMMs(HFHMMs) (Fraser & Dimitriadis, 1993) combine discrete and real-valued
state variables and outputs that depend on both. The real-valued state is determinis-
tically dependent on previous observations in a known manner, and only the discrete
variable is hidden. This allows exact inference in this model to be tractable. Chen
and Liu (2000) formulates theMixture Kalman Filter(MKF) model along with a filter-
ing algorithm, similar to Ackerson and Fu (1970) except that the filtering algorithm is
based on sequential Monte-Carlo sampling.

Switching State-Space Models(SSSMs) (Ghahramani & Hinton, 2000) posit the
existence of several real-valued hidden state variables that evolve linearly, with a sin-
gle Markovian discrete-valued switching variable selecting the state which explains the
real-valued observation at every timestep. Since exact inference and learning are in-
tractable in this model, the authors derive a structured variational approximation that
decouples the state space and switching variable chains, effectively resulting in Kalman
smoothing on the state space variables and HMM forward-backward on the switching
variable. In their experiments, the authors find SSSMs to perform better than regular
LDSs on physiological data modeling task with multiple distinct underlying dynamical
models. HMMs performed comparably well in terms of log-likelihood, indicating their
ability to model nonlinear dynamics though the resulting model was less interpretable
than the best SSSM.

3.5 Predictive Models

Several learning algorithms for PSRs have been proposed (Singh et al., 2003; James
& Singh, 2004; Wolfe et al., 2005). It is easier for PSR learning algorithms to return
consistentparameter estimates because the parameters are based on observable quan-
tities. Rosencrantz and Gordon (2004) develops an SVD-based method for finding a
low-dimensional variant of PSRs, calledTransformed PSRs(TPSRs). Instead of track-
ing the probabilities of a small number of tests, TPSRs track a small number of linear
combinations of a larger number of tests. This allows more compact representations,
as well as dimensionality selection based on examining the singular values of the de-
composed matrix, as in subspace identification methods. Note that nonlinearity can be
encoded into the design of core tests. Rudary and Singh (2003) introduced the concept
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of e-testsin PSRs that are indicator functions of aggregate sets of future outcomes, e.g.
all sequence of observations in the immediate future that end with a particular obser-
vation afterk timesteps. In general, tests in discrete PSRs can be indicator functions of
arbitrary statistics of future events, thus encoding nonlinearities that might be essential
for modeling some dynamical systems.

Kernelized versions of PLGs have been developed as well (Wingate & Singh,
2006a; Wingate & Singh, 2006b), which are analogous to nonlinear tests in discrete
PSRs by tracking expected values of arbitrary nonlinear functions of future observa-
tions. Recently, Exponential Family PSRs (EFPSRs) (Wingate & Singh, 2007) were
introduced as an attempt to generalize the PLG model to allow general exponential
family distributions over the nextN observations. In the EFPSR, state is represented
by modeling the parameters of a time-varying exponential family distribution over the
next N timesteps. This allows graphical structure to be encoded in the distribution,
by choosing the parameters accordingly. The justification for choosing an exponen-
tial family comes from maximum entropy modeling. Though inference and parameter
learning are difficult in graphical models of non-trivial structure, approximate inference
methods can be utilized to make these problems tractable. Like PLGs, the dynamical
component of EFPSRs is modeled byextendingandconditioningthe distribution over
time. However, the method presented Wingate and Singh (2007) has some drawbacks,
e.g. the extend-and-condition method is inconsistent with respect to marginals over
individual timesteps between the extended and un-extended distributions.

4 Technical Contributions

In this section we describe work which has already been completed, resulting in algo-
rithms for efficient inference, parameter and structure learning in latent variable models
of dynamical systems of different kinds.

4.1 Fast Inference and Learning in Large State Space HMMs

For HMMs with fully connected transition models, the three fundamental problems
of evaluating the likelihood of an observation sequence, estimating an optimal state
sequence for the observations, and learning the model parameters, all have quadratic
time complexity in the number of states. In Siddiqi and Moore (2005), we introduced
a novel class of non-sparse Markov transition matrices called Dense-Mostly-Constant
(DMC) transition matrices that allow us to derive new algorithms for solving the ba-
sic HMM problems in sub-quadratic time. We describe the DMC HMM model and
algorithms and attempt to convey some intuition for their usage. Empirical results for
these algorithms show dramatic speedups for all three problems. In terms of accuracy,
the DMC model yields strong results and outperforms the baseline algorithms even in
domains known to violate the DMC assumption.
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Figure 6: A. Running times (in seconds) for the Viterbi algorithm in regular and
DMC HMMs. The synthetic data set being used here consists of2000 rows of two-
dimensional observations. B. Learning curves for 20-state DMC HMMs with different
K values on the Motionlogger data set, compared to a 20-state regular HMM and two
baseline models.

4.1.1 The Model

Specifically, a DMC transition matrix can be decomposed into the sum of a sparse
matrix with K non-zero entries per row, and a rank-one matrix. For example, for a
3× 3 transition matrix withK = 1, an example of a DMC transition matrix is:




0.5 0.25 0.25
0.2 0.2 0.6
0.1 0.8 0.1


 =




0.25 0 0
0 0 0.4
0 0.7 0


 +




0.25 0.25 0.25
0.2 0.2 0.2
0.1 0.1 0.1




The intuition behind DMC transition matrices is the assumption that there are only
K transitions per state that are important enough to model exactly, and otherwise the
state transition happens with some uniform probability. Another way of looking at it is
as a mixture of a sparse transition model and a uniform one.

The DMC HMM model allows us to derive algorithms for likelihood evaluation,
inference and learning (with fixed set of important transitions) that are sub-quadratic
in the number of states, which is useful in scaling up to large state spaces. However,
we would ideally like to update the set of important transitions at each iteration of EM
as well. We describe an algorithm for simultaneous learning of DMC HMM structure
(i.e. the set of important transitions) and parameters, which has a small quadratic com-
ponent. The advantages of DMC HMMs over sparse transition matrices, which also
allow sub-quadratic algorithms, are the greater expressiveness of allowing all possible
transitions, and the ability to learn the set of important transitions from data. In con-
trast, HMMs with sparse transition matrices disallow certain transitions entirely, which
can make the model brittle on noisy data. Furthermore, since transition parameters
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initialized to zero during Baum-Welch will stay at zero, the set of non-zero transitions
in such HMMs must be decideda priori. Importantly, the DMC assumption on the
transition model does not imply any particular structure in the belief state; the model is
still free to take on any valid belief from theN -dimensional simplex just as in regular
HMMs.

4.1.2 Algorithms

Let NC = {NCi}N
i=1 be a collection ofK-sized lists denoting the set ofK important

transitions for each state. Consider the Viterbi algorithm for computing the optimal
path through state space. Given an observation sequenceY , the Viterbi algorithm is
used to calculate the state sequenceX that maximizesP (X|Y, λ). Defineδt(i) as

δt(i) = max
x1,··· ,xt−1

P [x1x2 · · ·xt = i, y1y2 · · · yt|λ] (6)

The inductive formula forδt(j) used in the Viterbi algorithm is

δt+1(j) = [max
i

δt(i)aij ]bj(yt+1) (7)

Since there is a maximization overN terms carried out for each state per timestep,
and there areN × T δt(i) values to be calculated, the total running time of the Viterbi
algorithm isO(TN2). Under the DMC condition, however, we can calculate this max-
imization more efficiently.

δt+1(i) =
[
max

i
δt(i)aij

]
bj(yt+1) (8)

=
[
max

{
max

i
δt(i)ci, max

i:j∈NCi

δt(i)aij

}]
bj(yt+1)

We can split theO(N) maximization into two terms: a maximization overN terms that
is common to the entire timestep, and a maximization over an average ofK terms per
state. The first maximization adds an amortized cost ofO(1) over theN states, and the
second one adds aO(K) cost. Overall, this results in a time complexity ofO(TNK)
for computing the optimal state sequence. An analogous trick with summations instead
of maximization allows fast computation of the alpha and beta variables in the forward-
backward algorithm. If we fix the set of important outgoing transitions over iterations
of EM, parameter learning is strictlyO(TNK) as well.

4.1.3 Experimental Results

Figure 6 shows results comparing DMC HMMs to regular HMMs and baseline mod-
els. For any fixed value ofK, the speedup factor for inference is significant as the
number of states increases, as seen in Figure 6(A). The speedup for structure and pa-
rameter learning is also large but not as much as for inference, since some amount of
quadratic-time overhead is spent in structure learning. Figure 6(B) plots mean test-set
log-likelihood results over EM iterations from learning a20-state HMM on the Motion-
logger data set (see paper for details). We see that the DMC assumption does not hurt
the results significantly in comparison to the baseline models of a uniform-transitions
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Figure 7: A. A time series from a4-state HMM. Observations from the two states
down-middle-upandup-middle-downoverlap and are indistinguishable without tem-
poral information. B. The HMM topology learned by ML-SSS and Li-Biswas on the
data in A. C. The correct HMM topology, successfully learned by the STACS algo-
rithm.

HMM (i.e. a mixture of Gaussians) and a regular5-state HMM. Indeed, as we increase
K from 1 upwards, we find that the results forK = 4 andK = 5 are equivalent to the
unconstrained HMM, indicating that we’ve reached some ‘intrinsic’ DMCK-value for
this data sequence.

4.2 Fast State Discovery for HMM Model Selection and Learning

Choosing the number of hidden states and their topology (model selection) and estimat-
ing model parameters (learning) are important problems for HMMs. In Siddiqi et al.
(2007b), we presented a new state-splitting algorithm called Simultaneous Temporal
and Contextual Splitting (STACS) that addresses both these problems. The algorithm
models more information about the dynamic context of a state during a split, enabling
it to discover underlying states more effectively than previous splitting methods, which
fail on overlapping densities such as in Figure 7 where STACS succeeds. Compared
to previous top-down methods, STACS also touches a smaller fraction of the data per
split, leading to faster model search and selection. Because of its efficiency and ability
to avoid local minima, the state-splitting approach is a good way to learn HMMs even
if the desired number of states is known beforehand. We compare our approach to pre-
vious work on synthetic data as well as several real-world data sets from the literature,
revealing significant improvements in efficiency and test-set likelihoods. We also com-
pare to previous algorithms on a sign-language recognition task, with positive results.
A more efficient, coarser variation called Viterbi STACS (V-STACS) is also developed,
and is shown to perform better or nearly as well in most circumstances.

4.2.1 The Algorithm

The primary idea behind STACS is to trade off the amount of contextual information
considered per split in return for increased modeling of temporal information. Here,
contextual information is quantified by the number of data points considered during
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split design, and temporal information by the number of transition parameters opti-
mized.

Specifically, we model the posterior belief at each timestep by a delta function at
the Viterbi-optimal state. Each split is optimized over data points with non-zero belief
in this approximated posterior, which numberT/N on average. This is in contrast
to ML-SSS where each split could considerO(T ) timesteps. LetT s denote the set
of timesteps owned by states in the Viterbi path. We choose the split that locally
optimizes thepartially observed likelihoodP (Y, X∗

\T s | λ) at each model selection
step, with all timesteps fixed at their optimal path states except those inT s. Variants of
Baum-Welch and Viterbi Training are developed for the task of optimizing the partially
observed likelihood. Care is taken to ensure that the overall algorithm is asymptotically
as efficient as conventional inference and learning, i.e.O(TN2).

4.2.2 Experimental Results

We evaluated STACS and V-STACS on a number of real-world data sets. Experi-
ments show that our algorithms are more efficient and scalable inN than previous
state-splitting methods (Figure 8(A)). They also learn better models with higher test-
set likelihood scores when learning models of predetermined size (Figure 8(B)). When
they’re allowed to stop splitting autonomously, the improved split design mechanism
of STACS and V-STACS leads them to find more good splits and thus larger final
models that have better test-set likelihoods than those discovered by other methods
(Figure 8(C)).
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Figure 9: (A): Conceptual depiction of the space ofn × n matrices. The region of
stability (Sλ) is non-convex while the smaller region of matrices withσ1 ≤ 1 (Sσ) is
convex. The elliptical contours indicate level sets of the quadratic objective function
of the QP.Â is the unconstrained least-squares solution to this objective.ALB-1 is the
solution found by LB-1 (Lacy & Bernstein, 2002). One iteration of constraint gener-
ation yields the constraint indicated by the red line, and (in this case) leads to a stable
solutionA∗. The final step of our algorithm improves on this solution by interpolating
A∗ with the previous solution (in this case,Â) to obtainA∗final. (B): The actual stable
and unstable regions for the space of2 × 2 matricesEα,β = [ 0.3 α ; β 0.3 ], with
α, β ∈ [−10, 10]. Constraint generation is able to learn a nearly optimal model from a
noisy state sequence of length7 simulated fromE0,10, with better state reconstruction
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4.3 Learning Stable Linear Dynamical Systems with Constraint
Generation

Stability is a desirable characteristic for LDSs, but it is often ignored by algorithms
that learn these systems from data. We proposed (Siddiqi et al., 2007a) a novel method
for learning stable LDSs: we formulate an approximation of the problem as a convex
program, start with a solution to a relaxed version of the program, and incrementally
add constraints to improve stability. Rather than continuing to generate constraints
until we reach a feasible solution, we test stability at each step; because the convex
program is only an approximation of the desired problem, this early stopping rule can
yield a higher-quality solution. We apply our algorithm to the task of learning dynamic
textures from image sequences as well as to modeling biosurveillance drug-sales data.
The constraint generation approach leads to noticeable improvement in the quality of
simulated sequences. We compare our method to those of Lacy and Bernstein (Lacy &
Bernstein, 2002; Lacy & Bernstein, 2003), with positive results in terms of accuracy,
quality of simulated sequences, and efficiency.

4.3.1 The Algorithm

An estimate of the underlying state sequence is first obtained using subspace identi-
fication. We then formulate the least-squares minimization problem for the dynamics
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matrix as a quadratic program (QP) (Boyd & Vandenberghe, 2004), initially without
constraints. When this QP is solved, the estimateÂ obtained may be unstable. How-
ever, any unstable solution allows us to derive a linear constraint which we then add
to our original QP and re-solve. The above two steps are iterated until we reach a sta-
ble solution, which is then refined by a simple interpolation to obtain the best possible
stable estimate.

Our method can be viewed asconstraint generation(Horst & Pardalos, 1995) for
an underlying convex program with a feasible set of all matrices with singular values at
most1, similar to work in control systems such as (Lacy & Bernstein, 2002). However,
we terminatebeforereaching feasibility in the convex program, by checking for matrix
stability after each new constraint. This makes our algorithm less conservative than
previous methods for enforcing stability since it chooses the best of a larger set of
stable dynamics matrices. The difference in the resulting stable systems is noticeable
when simulating data. The constraint generation approach also implies much greater
efficiency than previous methods in nearly all cases.

Figure 9(A) illustrates the space of dynamics matrices along with the quadratic
objective, spaces of stable andσ1 ≤ 1 matrices, and linear constraints as well as the
naive least-squares solution̂A, the solution returned by our algorithm, and that found
by previous methods. Figure 9(B) plots a 2-D slice view of the space of stable2 × 2
matrices for a particular class of matrices, as an example of how highly non-convex the
space of stable matrices can be, making it a difficult optimization problem.

4.3.2 Experimental Results

One application of LDSs in computer vision is learningdynamic texturesfrom video
data (Soatto et al., 2001). An advantage of learning dynamic textures is the ability
to play back a realistic-looking generated sequence of desired duration. In practice,
however, videos synthesized from dynamic texture models can quickly become degen-
erate because of instability in the underlying LDS. In contrast, sequences generated
from dynamic textures learned by our method remain “sane” even after arbitrarily long
durations. We also apply our algorithm to learning baseline dynamic models of over-
the-counter (OTC) drug sales for biosurveillance, and sunspot numbers from the UCR
archive (Keogh & Folias, 2002). Comparison to the best alternative methods (Lacy &
Bernstein, 2002; Lacy & Bernstein, 2003) on these problems yields positive results,
some of which are presented in Figure 10.

We examine daily counts of OTC drug sales in pharmacies, obtained from a bio-
surveillance laboratory. The counts are divided into23 different categories and are
tracked separately for each zipcode in the country. We focus on zipcodes from a par-
ticular American city. The data exhibits7-day periodicity due to differential buying
patterns during weekdays and weekends. We isolate a60-day subsequence where the
data dynamics remain relatively stationary, and attempt to learn LDS parameters to be
able to simulate sequences of baseline values for use in detecting anomalies.

We perform two experiments on different aggregations of the OTC data, with pa-
rameter valuesn = 7, d = 7 andτ = 14. Figure 4.3.2(A) plots22 different drug cat-
egories aggregated over all zipcodes, and Figure 4.3.2(B) plots a single drug category
(cough/cold) in29 different zipcodes separately. In both cases, constraint generation is
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Figure 10: Dynamic textures. A. Samples from the originalsteam sequence and the
fountain sequence. B. State evolution of synthesized sequences over1000 frames
(steam top, fountain bottom). The least squares solutions display instability as
time progresses. The solutions obtained using LB-1 remain stable for the full1000
frame image sequence. The constraint generation solutions, however, yield state se-
quences that are stable over the full1000 frame image sequence without significant
dampening. Finally, the constraint generation synthesizedsteam sequence is qual-
itatively better looking than thesteam sequence generated by LB-1 although there
is little qualitative difference between the two synthesizedfountain sequences. C.
Samples drawn from1000 image least squares synthesized dynamic texture sequences
(top), and samples from the constraint generation model drawn from a similarly syn-
thesized1000 image dynamic texture sequence (bottom).

able to use very little training data to learn a stable model that captures the periodicity
in the data, while the least squares model is unstable and its observations diverge over
time. LB-1 learns a model that is stable but overconstrained, and the simulated obser-
vations quickly drift from the correct magnitudes. We also tested the algorithms on the
sunspots data (Figure 4.3.2A) with parametersn = 7, d = 18 andτ = 50, with similar
results.

5 Directions for Future Work

The research we have carried out thus far explores several aspects of efficient and ac-
curate inference, structure and parameter learning in models of dynamical systems.
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Figure 11: (A):60 days of data for22 drug categories aggregated over all zipcodes
in the city. (B): 60 days of data for a single drug category (cough/cold) for all29
zipcodes in the city. (C): Sunspot numbers for200 years separately for each of the12
months. The training data (top), simulated output from constraint generation, output
from the unstable least squares model, and output from the over-dampened LB-1 model
(bottom).

DMC HMMs (Siddiqi & Moore, 2005) offer efficiency and scalability while allow-
ing a principled tradeoff between fully unconstrained and sparse transition models in
HMMs. STACS and V-STACS (Siddiqi et al., 2007b) are fast, scalable algorithms for
simultaneously learning the topology of HMMs while determining locally optimal pa-
rameters, while avoiding many of the local minima problems inherent in other methods
for HMM model selection and learning. Siddiqi et al. (2007a) uses subspace identifica-
tion to learn LDS parameters while enforcing stability in the dynamics matrix through
a constraint generation algorithm, in a way that is more efficient and accurate than
previous methods. All of these models and algorithms increase our understanding of
dynamical systems and latent variable models, and provide us a set of tools for efficient
operations on these models.

This research draws our attention to some recurring themes that motivate our pro-
posed work. Efficiently and accurately learning latent variable models while avoiding
instability and local minima is a difficult problem. Model selection and dimensionality
reduction are also challenging. Finally, different latent variable models offer different
benefits and drawbacks. LDSs possess a smoothly evolving state variable that is effec-
tive at modeling systems with smooth state trajectories, but fail at the task of modeling
non-convex observation likelihoods such as required by some systems. HMMs handle
non-convexity better due to the discrete state, but are only suitable for systems with
non-continuous state transitions and not for systems where smooth evolution of the
state is required. In this thesis we aim to build better models for dynamical systems by:
(a) extending our learning algorithms to the predictive modeling framework of PSRs
in order to leverage advantages of that framework such as the absence of identifiabil-
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ity problems and the existence ofconsistentlearning algorithms, (b) using the matrix
decomposition-based learning framework of subspace identification to perform model
selection and dimensionality reduction and avoid the intractability and local minima
problems of latent variable model algorithms, and (c) generalizing to the larger set of
exponential family models for greater flexibility and representative power. We believe
the result of this work will be a novel model that combines the benefits of models
such as HMMs and PLGs. Our model will differ from existing hybrid models such
as SSSMs by being more general and by avoiding some of the parameter learning dif-
ficulties inherent in these models. Another goal is to formulate better algorithms for
existing predictive models.

5.1 Better Learning Algorithms for Low Dimensional PSRs

Conventional PSRs represent the state of a discrete-observation dynamical system as
a vector ofN probabilities of a set of observable future outcomes calledcore tests
that form a sufficient statistic for the system at any given time, in the sense that the
probability ofany other future eventcan be represented linearly in terms of the core test
probabilities. As mentioned above, note that tests need not be simply the occurrence
of future observations. they could also be some arbitrary nonlinear statistic about one
or more future observations. While this makes the state highly interpretable, it poses
the problem of discovering the dimensionality of a system given a data set as well as
discovering the correct set of core tests. In contrast, low dimensional PSR models such
as TPSRs represent the state of a PSR not as a set of probabilities ofN core tests, but as
N linear combinations of a larger number of test probabilities. Though the state itself
no longer consists of quantities as easily interpretable as probabilities, an advantage
of the TPSR representation is that it removes the need of discovering an exact set of
core tests. Rather, an overly large set of simple tests can be initially specified since we
will be storing a small number of linear combinations of their probabilities. Another
advantage of the TPSR representation is that it allows us to estimate the dimensionality
of the model using matrix decomposition algorithms such as SVD and thresholding
the singular values to obtain a low-rank approximation (Rosencrantz & Gordon, 2004).
TPSRs have been shown to perform well in comparison to HMMs in a robot tracking
task.

We propose to improve on two shortcomings of TPSR learning algorithms. Firstly,
the algorithms are currently based on the original definition ofhistories as a sequence
of observable events from the beginning of time until the current timestep. Instead,
suffix-histories(Wolfe et al., 2005) specify a sequence of observable events in the last
few timesteps and use that to find core test probabilities, which is implicitly an average
over rows of the system-dynamics matrix. Suffix-histories are similar to theindicative
events(Jaeger, 2000) of OOMs. Using suffix-histories to represent TPSR states will
make them more efficient and compact. Secondly, TPSR learning algorithms are not
guaranteed to returnstableparameters. This causes TPSRs to eventually generate in-
valid states (i.e. invalid probabilities) when we simulate data from them. We aim to
investigate properties of the PSR state space and address this shortcoming by formu-
lating a parameter learning algorithm for TPSRs that guarantees stability. One step
in this direction is to reparameterize the TPSR state space into a form which is easier
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Figure 12: Frames from more structured dynamic textures with non-convex state spaces
(traffic moving, flag waving, robot traversing hallway) that we aim to be able to model
using low-dimensional exponential family PSRs.

to represent and renormalize at every step, similar to the simplex for HMMs and the
ellipse for LDSs.

5.2 Learning Low-Dimensional PLGs

Predictive Linear Gaussians represent dynamical systems of real-valued observations
with a Gaussian distribution over the nextN future observations. The parameters of
this distribution form a sufficient statistic for the state of the system, and inference is
performed byextendingandconditioningthis window ofN observations. PLGs sub-
sume LDSs and have the advantage, like other predictive models, of allowingconsistent
learning algorithms. However, what if the state of the system depends on some longer-
range future observations that extend far beyondN timesteps in the future? PLGs can
only model such systems by extending their window out to those future observations,
which may makeN so large as to render the model impractical, especially in cases
where each individual observation is high-dimensional (e.g. images). The current PLG
model does not easily allow us to represent such systems nor to detect their dimension-
ality in the first place.

We propose to incorporate the benefits of transformed PSRs into PLGs by formu-
lating a low dimensional PLG or transformed PLG (TPLG) model that maintains a
distribution overN linear combinations over a much larger set of future observations.
In addition to allowing us to model linear Gaussian systems with a small set of long-
range dependencies in its state, this model allows us to use matrix decomposition to
determine the order of the system, much as in TPSRs.

5.3 A Low-Dimensional Exponential Family PSR

The EFPSR model of Wingate and Singh (2007) defines the state of a dynamical sys-
tem as the time-varying parameters of an exponential family distribution over the next
N future observations. This allows us to model structure in the observations using
graphical exponential family models, lending EFPSRs both the power of state-of-the-
art probabilistic modeling and the problems of intractable inference and learning in the
general case, which are tackled using approximate inference techniques. Exponential
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Family PSRs offer the potential to generalize predictive models such as PSRs and PLGs
(which in turn subsume latent variable models such as HMMs and LDSs) by allowing
us to model statistics of future observations with arbitrary graphical structure as ran-
dom variables with possibly non-Gaussian distributions that are still well-behaved in
some sense due to convenient properties of the exponential family.

We propose to investigate generalizations and alternative formulations of expo-
nential family PSRs and their algorithms for both real-valued and discrete observa-
tions. One possible generalization is to devise low-dimensional exponential family
PSRs which modelN statistics over a large number of future observations along with
their dependencies using graphical exponential family models over arbitrary features of
future observations. We believe that exponential family PSRs will allow us to combine
benefits of models we have seen so far and model systems such as the clock pendulum
video (Figure 4) and others that exhibit non-convex state spaces (Figure 12) which
requires the ability to model smoothly evolving state variables in non-convex observa-
tion likelihood spaces. The challenge is to formulate a model general enough to unify
these different trends while still allowing tractable inference and learning algorithms.

5.4 Algorithms for Low-Dimensional Exponential Family PSRs

We also propose to devise efficient inference, parameter learning and structure learning
algorithm for the low-dimensional exponential family PSR, again utilizing the global
convergence and lack of local minima inherent in matrix decomposition techniques
such as the SVD. In addition to learning parameters, this will allow us to select the
dimensionality of the models. One drawback of of the existing EFPSR inference al-
gorithm is its inconsistency in marginal distribution over future observations during its
extension and conditioning phases, which arises due to ignoring the need for backward
message-passing from the future in the model. We aim to address this drawback and
ensure consistency in our inference algorithms.

An important benefit of the learning algorithms we propose is its avoidance of the
need for approximate inference and learning in other hybrid models such as SSSMs
(Ghahramani & Hinton, 2000) by using the subspace identification paradigm.

5.5 Experimental Evaluation

We will evaluate our models and algorithms on domains consistent with previous work
in the respective areas, using sequential data sets well known in the literature as in (Sid-
diqi & Moore, 2005; Siddiqi et al., 2007b). An important application domain is dy-
namic textures of video data, as in our previous work (Siddiqi et al., 2007a), where
we aim to be able to model interesting textures with more structure and complexity
than previously possible. We will also apply our algorithms to data from the biosur-
veillance domain, as done in the past to model stable baseline models for outbreak
detection (Siddiqi et al., 2007a).

24



5.6 Timeline

Work on the ideas and goals outlined in this thesis proposal is already in progress. The
research on low-dimensional PSRs will be carried out by the end of March 2008, and
the work on low-dimensional PLGs by May 2008. Work on the exponential family
PSR model and algorithms is projected to conclude by September 2008, with thesis
writing and defense scheduled to complete by December 2008.
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