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Abstract

A variety of learning problems in robotics, computer vision and other ar-
eas of artificial intelligence can be construed as problems of learning statistical
models for dynamical systems from sequential observations. Good dynamical
system models allow us to represent and predict observations in these systems,
which in turn enables applications such as classification, planning, control,
simulation, anomaly detection and forecasting. One class of dynamical sys-
tem models assumes the existence of an underlying hidden random variable
that evolves over time and emits the observations we see. Past observations
are summarized into the belief distribution over this random variable, which
represents the state of the system. This assumption leads to ‘latent variable
models’ which are used heavily in practice. However, learning algorithms for
these models still face a variety of issues such as model selection, local op-
tima and instability. The representational ability of these models also differs
significantly based on whether the underlying latent variable is assumed to
be discrete as in Hidden Markov Models (HMMs), or real-valued as in Lin-
ear Dynamical Systems (LDSs). Another recently introduced class of models
represents state as a set of predictions about future observations rather than
as a latent variable summarizing the past. These ‘predictive models’, such as
Predictive State Representations (PSRs), are provably more powerful than la-
tent variable models and hold the promise of allowing more accurate, efficient
learning algorithms since no hidden quantities are involved. However, this
promise has not been realized.

In this thesis we propose novel learning algorithms that address the issues
of model selection, local minima and instability in learning latent variable
models. We show that certain 'predictive’ latent variable model learning meth-
ods bridge the gap between latent variable and predictive models. We also
propose a novel latent variable model, the Reduced-Rank HMM (RR-HMM),
that combines desirable properties of discrete and real-valued latent-variable
models. We show that reparameterizing the class of RR-HMMs yields a sub-
set of PSRs, and propose an asymptotically unbiased predictive learning algo-
rithm for RR-HMMs and PSRs along with finite-sample error bounds for the
RR-HMM case. In terms of efficiency and accuracy, our methods outperform
alternatives on dynamic texture videos, mobile robot visual sensing data, and
other domains.
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Chapter 1
Introduction

Modeling of dynamical systems is an important aspect of robotics, artificial intelligence
and statistical machine learning. Such modeling is typically baseabsarvationghat

arise from the dynamical system over time. A distinguishing characteristic of dynamical
systems is that their observations exhtkinporal correlationsmodeling of which is the

main challenge of dynamical systems analysis. Accurate models of dynamical systems
allow us to perform a variety of useful tasks, suctpesdiction, simulation, recognition,
classification, anomaly detecti@ndcontrol. In this thesis we focus oancontrolleddy-
namical systems witimultivariate real-valued observationsThis thesis contributes (1)
novel learning algorithms for existing dynamical system models that overcome significant
limitations of previous methods, (2) a deeper understanding of some important distinctions
between different dynamical system models based on differences in their underlying as-
sumptions and in their learning algorithms, and (3) a novel model that combines desirable
properties of several existing models, along with inference and learning algorithms which
have theoretical performance guarantees.

Two major approaches for modeling dynamical systems in machine learnibgterd
Variable Models (LVMsand predictive modelswhich have different benefits and draw-
backs. An LVM for dynamical systems assumes its observations are noisy emissions from
an underlyindatent variablethat evolves over time and representsstageof the system.



In other words, the latent state is a sufficient statistic fopa#itobservations. LVMs prob-
abilistically model both the latent variable’s evolution and the relationship between latents
and observables. Typical parameter learning algorithms for LVMs (such as the Expecta-
tion Maximization (EM) algorithm and related methods) are proriedal optimaof their
objective functions, and so cannot provide consistent parameter estimates with reasonable
amounts of computation especially for large models, since multiple restarts are required to
search the space of local optima. In contrast, predictive models (such as Predictive State
Representations (PSRs)) and their learning algorithms define the state of a dynamical sys-
tem as a set gbredictionsof expected values of statistics of the future, catlests Since

there are no latent or “hidden” quantities involved, learning algorithms for predictive mod-
els (which typically rely on matrix factorization rather than on EM) can ymdsistent
parameter estimates, though guaranteeing well-formed parameters with finite samples is
often a challenge. Research from control theory as well as recent work in statistical learn-
ing theory (including parts of this thesis) have blurred the distinction between LVMs and
predictive models by showing that LVMs can be learned in a globally optimal fashion with
predictive algorithms, allowing us to interpret their latent variables as tests.

The two best-known examples of LVMs for continuous-observation dynamical systems
areHidden Markov Models (HMMs)Chapter2) andLinear Dynamical Systems (LDSSs)
(Chapter3). Other LVMs for dynamical systems are often based on one or both of these
two models. We describe important properties of HMMs and LDSs in more detail below.

HMMs assume aliscretelatent variable that can take on finitely many values, each
characterized by a unique probability distribution over observations. These assumptions
allow HMMs to model a large variety of predictive distributions during forward simulation
(including predictive distributions which are not log-concave), which is an advantage for
modeling a variety of real-world dynamical systems. We will use the ssmpetitive
inhibitionto denote the ability of a model (such as the HMM) to represent non-log-concave
predictive distributions. A model that performs competitive inhibition can probability
mass on distinct observations while disallowing mixtures of those observations. However,
the discrete nature of the HMM’s latent state makes it difficult to model smoothly evolving
dynamical systems, which are also common in practice. Another difficulty with HMMs



is the problem oimodel selectionor determining the correct number of states and the
structure (e.g. sparsity) of the transition and observation functions.

On the other hand, LDSs assume&e@ntinuouslatent variable that evolves linearly
with Gaussian noise, and a Gaussian observation distribution whose mean is linear in
the latent variable. These assumptions make LDSs adept at modeling smoothly evolving
dynamical systems but unable to perform competitive inhibition. The inability to handle
competitive inhibition stems from the fact that the predictive distribution is always log-
concave; therefore any convex combination of likely observations will also be likely. Also
unlike HMMs, matrix-factorization-based approaches to learning LDSs make it easy to
perform model selection. Another distinction from HMMs is that conventional learning
algorithms for the LDS do not guarantsable parameters for modeling its dynamics.
This can be either a benefit or a drawback, since the system to be modeled may be either
unstable or stable. However, all of the systems that we consider modeling in this thesis are
stable, so we consider it a drawback when a learning algorithm returns an unstable set of
parameters.

In this thesis we advance the theory and practice of learning dynamical system models
from data in several ways. We first address the tendency of HMM learning algorithms to
get stuck in local optima, and the need to pre-define the number of states: we dévelop
multaneous Temporal and Contextual Splitt{(8&JACS), a novel EM-based algorithm for
performing both model selection and parameter learning efficiently in Gaussian HMMs
while avoiding local minima (Chapte). Results show improved learning performance
on a wide variety of real-world domains. We next address a deficiency in conventional
LDS learning algorithms: we propose a matrix-factorization-based learning algorithm for
LDSs that usegonstrained optimizatiotno guarantee stable parameters and yields su-
perior results in simulation and prediction of a variety of real-world dynamical systems
(Chapter5). Finally, we address the more ambitious goal of bridging the gap between
models that can perform competitive inhibition and models that can represent smoothly
evolving systems: we propose tReduced-Rank Hidden Markov Model (RR-HMId)
model that can do both the above (ChapierWe investigate its relationship to existing
models, and propose a predictive learning algorithm along with theoretical performance



guarantees. We demonstrate results on a variety of high-dimensional real-world data sets,
including vision sensory output from a mobile robot.



Chapter 2

Hidden Markov Models

Hidden Markov Models (HMMs) are LVMs where the underlying hidden variable can
take on one of finitely mangiscretevalues. Introduced in the late 1960s, HMMs have
been used most extensively in speech recognitipa][and bioinformatics §] but also in
diverse application areas such as computer vision and information extractiohn For

an excellent tutorial on HMMs, see Rabinéj.[ In this chapter we define HMMs and
describe their standard inference and learning algorithms.

2.1 Definition

Leth; € 1,...,mdenote the discrete hidden states of an HMM at tinaendz;, € 1,...,n
denote the observations. These can be either discrete or continuous—we will specify
our assumptions explicitly for different instances. e R™*™ be the state transition
probability matrix with its[z, j]" entry T}; having valuePr[h; 1 = i | hy = j]. O'is the
column-stochastic observation model such that j) = Pr[z; =i | h, = j|. For discrete
observations() is a matrix of observation probabilities of sirex m, andO(z, j) = O;;
denotes thé&, 5] entry ofO. For continuous observationd(x, j) denotes the probability

of observationz under a Gaussian distribution specific to statée. O(z,j) = N(z |
wi,X;). © € R™ is the initial state distribution witht; = Pr[h; = i]. We use)\ to denote
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the entire set of HMM parametefd”, O, n}. Figure?2.1lillustrates the graphical model
corresponding to an HMM.

Let i, € R™ denote the systemiselief statei.e. a distribution over hidden states at
timet. If we usee; to denote the*” column of the identity matrix, theﬁt is equivalent to
the conditional expectation ef,,, with the conditioning variables clear from context. We
use the ternpathto denote a sequence of hidden stdiles hq, ho, ..., h, corresponding
to a sequence of observatioNs= z1, zs, . . ., x, from an HMM.

Computing the probability of a sequence of observations with an HMM is very simple.
Note thatPr|x;] can be expressed as a chain product of HMM parameters) Lelenote
the row of O containing probabilities for observatianunder each possible state. Now,
define the parameters, as

A, =T diag(O,,) (2.1)

Then,
Pr(zy] = ) Prlzy | hy = g] Pr[ly = g] = 1], diag(O,, )7

g

Similarly, Pr[xiz . .. ;] can be expressed as

Z Pr[l‘,r ’ hT = gT] Pr[h'r =Jr | hq—_l = g7—_1] . -Pr[l’l | h/l = 91] Pr[hl = 91]

g1y g1
= 11T diag(O,, )T diag(O,._,.)---T diag(O,,.)7
= 1T Ay Ay Ag .. Ap T (2.2)

We now describe standard algorithms for filtering (forward inference), smoothing (back-
ward inference), path inference, learning and model selection in HMMs.

2.2 Filtering and Smoothing

Filtering is the process of maintaining a belief distribution while incrementally condition-
ing on observations over time in the forward direction, from past to present. Define the

6



Figure 2.1: The graphical model representation of an HMM.

forward variablea(t, i) as
a(t,i) =Prlzy,...,xe,hy =1 | A

Then, the filtering belief distribution can be written using Bayes rule as the vegto) =
[a(t,1)...a(t,m)]" where the'" element is:

a(t, 1)

a(tfl) EPI‘[ht:Z | 1'1,...71',5,)\] = m
j ’

The values of«(¢, i) for all ¢, i can be computed inductively according to the following
equation {J:

alt,i) = 0(i,z) > alt —1,5)Ty
j
The corresponding vector update equation is:
a(t,-) = diag(O(:, ) Ta(t — 1,-)

Given the filtering belief probabilityx(¢,:) of being in state at timet , the corre-
sponding probability at timeé+ 1 can be obtained directly in the following two steps:
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Pr[ht+1 =1 | L1y ... ,l’t]

= Prlhs =i | hy = j]Pr[hy = j | 21,..., 2] (prediction step)
J

J
a(t +1,i) = Prlhe =i | 21,00, 24, Ty
Prlzigy | heyr = i Prlhyy =i | 21,0, 2y
update ste
Z Priziyr | hivr = 4] Prlhesr = 5 | @1, .0 @) (up P)
O, Tyy1) Prhypr =4 | 21, ..o, 2]

- Zj O(J, Teq1) Prihuys = J [ 21,00 2]

The forward variables also allow easy computation of the observation sequence prob-
ability:
Pr[X | \] = ZPrxl,...,mT,hT:j|)\]:Za(7,j)
j
In contrast to filteringsmoothingn HMMs is the process of maintaining a belief distrib-
ution over the present based on observations in the future. Defirmathkevard variable
B(t, i) as
B(t, 1) =Prlhy =10 | 2441, ..., 2]

The value of3(t, i) can also be updated inductively as follows.

ﬁ(tﬂ) - ZO<.77 It+1)7}iﬁ(t + 17])

j
The corresponding vector update equation is:
B(t,-) =TT diag(O(:,2,))B(t +1,-)

The process of computing the forward and backward variables from an observation se-
guence using filtering and smoothing as described above is knownfaswlaed-backward
algorithm Its running time isO(rm?). Together, the forward and backward variables
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allow us to compute thposterior stepwise belieEndposterior stepwise transition prob-
abilities for an entire observation sequence, which are denoted(hy) and{(t, i, j)
respectively:

v(t, i) = Prlhy =i | xq,...,2.] = %

E(ti,5) =Prlhy =i by =5 |21, 10 = a(t,i)T; ﬂérp( |i\§ (J, Te11)

As before, the denominators can be computed quickly by summing over the numerator.
These variables will be useful when describing parameter learning algorithms for HMMs.

2.3 Path Inference

Path inference is the task of computing a path corresponding to a given observation se-
quence for a given HMM, such that the joint likelihood of path and observation sequence
is maximized. Let\ denote the HMM andX denote the sequence of observations. Then,
path inference computg$* such that

H* = argmj?xPr[X,H | Al
For an observation sequence of lengththe Viterbi algorithm[9] computes an optimal
path in running time)(7m?) using dynamic programming.
Defined(t,:) as

d(t,i) = max Prlhihy---hy =i, 2129 - x4 | A]

hi,ehe—1
Though computing(t, ) for all ¢, naively would have running time that is exponential
in 7, it can be computed inductively in a more efficient fashion. The inductive formula for
d(t, 7) used in the Viterbi algorithm is

0(t,3) = (maxd(t, )13 ) O, aen)

Since there is a maximization ovet terms carried out for each state per timestep, and
there aren x 1 4(t,7) values to be calculated, the total running time of the Viterbi algorithm
is O(tm?).



2.4 Learning Hidden Markov Models

A large body of research exists on algorithms for learning HMM parameters from data. We
focus on two of the most common techniques here, naBalym-WelclandViterbi Train-

ing. These are both iterative methods analogous to the poputegans algorithm[0, 11]

for clustering independent and identically distributed (lID) data, in the sense that they
monotonically minimize a distortion function of the data with respect to a fixed number of
“centers” (herestate$ using successive iterations of computing distances to these centers
and updating these centers to better positions. Since HMMs model sequential data, there
is an additional dimension to these learning algorithms, namely the order in which data-
points tend to appear in the training sequence, which is modeled by the HMM’s transition
matrix.

The more recently developegectral learning algorithnfior HMMs [12, 13] relies on
a Singular Value Decomposition (SVD) of a correlation matrix of past and future obser-
vations to derive anbservable representatiaf an HMM. We describe this algorithm in
detail in Chapteb.

2.4.1 Expectation Maximization

Given one or several sequences of observations and a desired number of stetesan fit

an HMM to the data using an instance of EM] calledBaum-Welch15] which was dis-
covered before the general EM algorithm. Baum-Welch alternates between steps of com-
puting a set of expected sufficient statistics from the observed dat&{steg) and updat-

ing the parameters using estimates computed from these statistidg-gteg). The main
advantage of Baum-Welch is that these closed-form iterations are guaranteed to monoton-
ically converge to an optimum of the observed data log-likelihd@@\) = log Pr[X | Al.

The disadvantage is that it is only guaranteed to redolea optimum, and there are no
guarantees about reaching the global optimum. In practice, this issue is often addressed by
running EM several times starting from different random parameter initializations. How-
ever, as the number of states increases, the algorithm is increasingly prone to local optima
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to an extent that is difficult to overcome by multiple restarts. The algorithm can be sum-
marized as follows for a given training sequen<e= (z, xs, ..., z,), for both discrete
and continuous observations (assuming multinomial and Gaussian observation models re-

spectively):

1. Initialize X = (T, f, 5) randomly to valid values (i.e. preserving non-negativity and

stochasticity where needed).
2. Repeat while log-likelihoodl (X | X) increases by more than some threshold

(a) E-step Use forward-backward algorithm onandX to computex(t,i),5(t, )
for all ¢,7 and from these computgt, i) and¢(¢, 4, 7) for all ¢, 4, 5.

(b) M-step Compute updated parameter estimates (T, T, 5) as follows:

T ="(1,1) Vi
T7—1 ..
f(l,j) — tT_lg(tvju.Z) VZ, .
i ()

Multinomial observation model:

6(2,[1}) = M

> V(t 1)
Gaussian observation model:
/j. — Z::l ﬁ}/(ta]) * Ty
’ Z:ﬁ—zl V(taj)
%, = IIERICY) 'T(ﬁt — /ﬁ')(xt — )" vj
thl V(tvj)

€) X\
3. Return final parameter estimates
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2.4.2 Viterbi Training

Viterbi Trainingis the hard-updates analogue of Baum-Welch, in the sense that the E-step
approximates the posterior stepwise belief and transition probability distributi@msl

¢ with delta functions at a particular state and transition at every timestep. The particu-
lar state and transition chosen at each timestep are the state and transitioiviterthie
pathat that time. The M-step therefore sets transition and observation probabilities based
on counts computed from the Viterbi path. To update the prjof training is being per-
formed using several observation sequences the prior is based on the distribitiover

these sequences. For a single training sequence, it is best to set the prior to be uniform
rather than setting it to be a delta functiom&f though intermediate choices are also pos-
sible (e.gLaplace Smoothingvhich allows biased priors while ensuring no probability is
set to zero). The steps of Viterbi Training can be summarized as follows:

1. Initialize X = (T, f, §> randomly to valid values (i.e. preserving non-negativity and
stochasticity where needed).

2. Repeat while the Viterbi path keeps changing:

(a) E-step Compute the Viterbi path/* = (hf, b3, ... h¥)

(b) M-step Compute updated parameter estimates (T, T, 5> as follows:

~ 1
T = — \4)
T
~ Z h¥=j * g ].
T, j) = =5 Vi
t:hi=j
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Multinomial observation model:
~ Zt:h;‘ =iAxt=x 1

O(i,x) =
Et:hf:i 1
Gaussian observation model:
i Zt;h;:j Lt Vi
’ Zt:h;:j 1
= Zt;h;:j(% — )@ — )" ,
t:hy=j

(©) A2
3. Return final parameter estimates

The asymptotic running time of both Baum-Welch and Viterbi Trainin@ism?)
per iteration. However, Viterbi Training is faster by a constant factor. Viterbi Training
converges to a local maximum of the complete data likelihBdd, H | A], which does
not necessarily correspond to a local maximum of the observed data likelth&d| \]
as is usually desired. In practice, Viterbi Training is often used to initialize the slower
Baum-Welch algorithm which does converge to a local maximuir@X | A].

2.5 Related Work

Recently, HMMs and their algorithms have been re-examined in light of their connec-
tions to Bayesian Networks, such as irc]. Many variations on the basic HMM model
have also been proposed, such as coupled HMi{1$of modeling multiple interacting
processes, Input-Output HMMS {] which incorporate inputs into the model, hierarchical
HMMs [1€] for modeling hierarchically structured state spaces, and factorial HMN]s [

that model the state space in a distributed fashion. Another notable example of a special-
ized sub-class of HMMs tailored for a particular task is the constrained H¥Ayhich

was developed originally in the context of speech recognition. Nonparametric methods
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such as Hierarchical Dirichlet Processes (HDP<) have been used to define sampling-
based versions of HMMs with “infinitely” many states1] 27] which integrate out the
hidden state parameter. This class of models has since been improved upon in several
ways (e.g. P3Jto bring it closer to a practical model, though it remains challenging to
tractably perform learning or inference in these models on large multivariate data.
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Chapter 3
Linear Dynamical Systems

In the case where the state of an LVMnmultivariate real-valuedand the noise terms are
Gaussian, the resulting model is callebinear dynamical systerfL.DS), also known as a
Kalman Filter P4] or a state-space modei‘j]. LDSs are an important tool for modeling

time series in engineering, controls and economics as well as the physical and social sci-
ences. In this section we define LDSs and describe their inference and learning algorithms
as well as review the property efability as it relates to the LDS transition model, which

will be relevant later in Chapter 6. More details on LDSs and algorithms for inference and
learning in LDSs can be found in several standard referencesT, 28, 29).

3.1 Definition

Linear dynamical systems can be described by the following two equations:

T = Azy +we  wy ~ N(0,Q) (3.1a)
yr = Cry +v vy ~N(0,R) (3.1b)

Time is indexed by the discrete indéx Herez,; denotes thdiddenstates inR", y,; the
observations iRR™, andw; andwv, are Gaussian noise variables. In this thesis, we will
assumeu; andv, are zero-mean, though this may not hold in general. Assume the initial
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statex(0) = z,. The parameters of the system are the dynamics matrix R"*", the
observation model’ € R™*", and the noise covariance matriégsnd R denoted by the

following equation:
W
E T T —

In this thesis we are concerned witincontrolledlinear dynamical systems, though, as
in previous work, control inputs can easily be incorporated into the model. Also note
that in continuous-timedynamical systems, which we also exclude from consideration,

Q 0

St 3.2
o nl% (3.2)

the derivatives are specified as functions of the current state. They can be approximately
converted to discrete-time systems via discretization.

3.2 Inference

In this section we describe the forwards and backwards inference algorithms for LDSs.
More details can be found in several sourcgs P7, 29).

The distribution over state at time Pr[X; | y1.r|, can be exactly computed in two
parts: a forward recursion which is dependent on the initial staend the observations
y1.. Known as theKalman filter, and a backward recursion which uses the observations
from y7 to y;.1 known as theRauch-Tung-StriebdRTS) equations. The combined for-
ward and backward recursions are together calleB#iman smootherFinally, itis worth
noting that the standard LDS filtering and smoothing inference algoritai$ ] are in-
stantiations of the junction tree algorithm for Bayesian Networks on a dynamic Bayesian
network analogous to the one in Figwé (see, for example, 3[1]).

3.2.1 The Forward Pass (Kalman Filter)

Let the mean and covariance of the belief state estifgt&, | ;.| at timet be denoted
by i, and P, respectively. The estimatésand?, can be predicted from the previous time
step, the exogenous input, and the previous observationi;,gtdenote an estimate of

16



variabler at timet, given datay, . . ., y;,. We then have the following recursive equations:

Ty = ATp_1)i (3.3a)
Py = APt—1|t—1AT +Q (3.3b)

Equation 8.3)(a) can be thought of as applying the dynamics mattito the mean to
form an initial prediction ofz;. Similarly, Equation 8.3)(b) can be interpreted as using
the dynamics matrix4 and error covariancé) to form an initial estimate of the belief
covarianceP,. The estimates are then adjusted:

Ty = g1 + Kpey (3.3¢)
Pt|t = Pt\t—l - KtCPt|t—1 (3-3d)

where the error in prediction at the previous time step (the innovatijcem)d the Kalman
gain matrix K, are computed as follows:

ey = Y — (CZyp—) (3.3e)
K; = Py 1 CT(CPy 1 CT + R)™! (3.3f)

The weighted error in Equatio (3)(c) corrects the predicted mean given an observation,
and Equationd.3)(d) reduces the variance of the belief by an amount proportional to the
observation covariance. Taken together, Equatibf&@-f) define a specific form of the
Kalman filter known as théorward innovation model

3.2.2 The Backward Pass (RTS Equations)

The forward pass finds the mean and variance of the stafeonditioned orpastob-
servations. The backward pass corrects the results of the forward pass by evaluating the
influence offuture observations on these estimates. Once the forward recursion has com-
pleted and the final values of the mean and variange and Prr have been calculated,

the backward pass proceeds in reverse by evaluating the influence of future observations

17



on the states in the past:

Tyr = Ty + Ge(Terjr — Tegap) (3.4a)
Pyr = Py + Gi(Pryyr — Piap) Gy (3.4b)

wherex,; and P, are 1-step predictions

Top1e = Axy (3.4c)
Py = APt\tAT +@Q (3.4d)

and the smoother gain matriXis computed as:

Gy = Pt\tATPt;l”t (3.4e)
The cross variance, ;i = Cov[X;_1, Xi|y1.7], @ useful quantity for parameter estima-
tion (section3.3.1), may also be computed at this point:

Pivyr = Gi1 Pyr (3.4f)

3.3 Learning Linear Dynamical Systems

Learninga dynamical system from data (system identification) involves finding the para-
metersd = {A,C,Q, R} and the distribution over hidden variables= P(X | Y,0)

that maximizes the likelihood of the observed data. The maximum likelihood solution for
these parameters can be found through iterative techniques such as expectation maximiza-
tion (EM). An alternative approach is to usabspace identificatiomethods to compute

an asymptotically unbiased solution in closed form. In practice, a good approach is to use
subspace identification to find a good initial solution and then to refine the solution with
EM. The EM algorithm for system identification is presented in se@iBrland subspace
identification is presented in secti@rB.2
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3.3.1 Expectation Maximization

The EM algorithm is a widely applicable iterative procedure for parameter re-estimation.
The objective of EM is to find parameters that maximize the likelihood of the observed
dataP(Y | 0) in the presence of latent variablesEM maximizes thdog-likelihood

£(0) = log P(Y | 6) = log / P(X,Y | 0)dX (3.5)
X

Using any distribution over the hidden variabl€$, a lower bound on the log-likelihood
F(Q,0) < L(#) can be obtained by using Jensen’s inequality (at equali@)j. EM is
derived by maximizingF(Q, 8) with respect toQ, which results inQ = P(X | Y, 0), the
posterior over hidden variables given the data and current parameter settings:

£(0) = log P(Y | 6) = log / P(X,Y | )dX (3.6a)
log/ Q(X P, Y)‘ %) X >/ Q(X)log %dw (3.6b)
_ / O(X)log P(X,Y | 6)dX — / Q(X) log O(X)dz (3.60)
X X
— F(0,0) (3.60)

The EM algorithm alternates between maximizing the lower-bound on the likelifood
with respect to the parametetsand the distributior@, holding the other quantity fixed.
Starting from some initial parameteigwe alternately apply:

Expectation-step (E-stepQ.,, < arg mQaX F(Q,0k) (3.78)
Maximization-step (M-step¥y.1 < arg max F(Qrs1,0) (3.7b)

wherek indexes an iteration, until convergence.

The E-Step The E-step is maximized whe is exactly the conditional distribution of

X, Qr1(X) = P(X | Y, 0;), atwhich point the bound becomes an equalfyQ;. 1, 0;) =
L(6). The maximum value 0B, (X) can be found by solving the LDS inference
(Kalman smoothing) problem: estimating the hidden state trajectory given the inputs, the
outputs, and the parameter values. This algorithm is outlined in setfion
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The M-Step As noted in Equationd.7)(b), the M-step is to find the maximum & Q. 1, 0) =
Jx Qi1 (X)log P(X,Y | 0)dX — [ Qpi1(X)log Qpi1(X)dx with respect tad. The
parameters of the systefin,; = {fl, 5, @, ﬁ} are estimated by taking the corresponding
partial derivative of the expected log-likelihood, setting to zero and solving, resulting in

T T -1
= (Z yE{z] | yl;T}> (Z E{w, | y1;T}> (3.8a)
R . T -
R = (Z yt?JtT - CZE{% ‘ y1;T}Z/tT> (3.8b)
T R B T -1
(Z E{iUtmtT—l ‘ yl:T}) (Z E{ﬂgtflmtT—l | yl:T}) (3.8¢)
— t=2

T T
—1 (Z E{il?tl'tT | yl:T} - AZE{ﬂft—letT | yl:T}) (3.8d)
t=2 t=2

Q)
I

Also note that the state covariance ma@i)(see Equation3.80) is positive semi-definite
by construction since it is thBchur complement?] of

T T
ZE{ R ]rle}zo (3.9)

T— 1Ll't T— 1l't 1

3.3.2 Subspace Identification

Learning algorithms based on Expectation-Maximization (EM) iteratively optimize the
observed data likelihooly (a) computing posterior estimates of first and second moments
of the latent variable, and (b) computing the most likely parameters given these estimates
of the latent variable. The Maximum-Likelihood Estimate (MLE}tatistically efficient

and EM-based methods can compute the MLE from finite data samples. However, EM-
based methods atmmputationally inefficiertbecause they only guarantee findinipeal
optimum of the observed data likelihood from a given starting point, and hence require
multiple restarts from random parameter initializations to search for the MLE.

In contrast Subspace Identificatiofsubspace ID) algorithms view the sequential data
model learning task as being@duced-rank regressiointom past to future observations,
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A, 300 Sunspot numbers

0 10 200

Figure 3.1: A. Sunspot data, sampled monthlyZo® years. Each curve is a month, the
x-axis is over years. B. First two principal components éf@bservation Hankel matrix.
C. First two principal components ofl2-observation Hankel matrix, which better reflect
temporal patterns in the data.

with the goal of minimizing theredictive reconstruction erromn L, norm. The reason

it is not an ordinary regression task is that the algorithm must compstibspacef the
observation space which allows prediction of future observations. This subspace is pre-
cisely the domain of the multivariate continuous latent state variable, and the parameters
that map from this subspace to future latent states and observations are precisely the dy-
namics matrix and observation matrix of the LDS and products thereof. Note that, like
other LVMs, since the LDS is amnidentifiablenodel, we only aim to discover the correct
parameters up to a similarity transform. The benefits and drawbacks of Subspace ID are
in some ways complementary to those of EM. Unlike multi-restart EM, Subspace ID is
somewhatstatistically inefficientsince it does not achieve the MLE for finite data sam-
ples, but it is much moreomputationally efficiensince it is not prone to local minima,

and theSingular Value Decomposition (SV[)7] attains the optimum parameter estimate
efficiently in the limit. Thus at the granularity where SVD is a subroutine, Subspace ID is

a non-iterative algorithm that admitscéosed-form solutionthough SVD internally is an
iterative algorithm.

Subspace ID has been described clearly in the literature in several places such as Van
Overschee (1996)2[/], Katayama (2005) 4% and more recently in Boots (2009}][
We summarize thencontrolledversion of the algorithm here and refer the reader to the
aforementioned references for details.

One useful degree of freedom that Subspace ID allows us is the ability to incorporate
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knowledge about the€-step observabilityof the linear system by specifying the length

of observation sequences that are treated as features by the algorithm. This is accom-
plished by stacking observations irbeck Hankel matri§26] during regression, forcing

the resulting parameter estimates to reconstruct esggeencesf observations based on
multiple past observations. Defing;_, as the following matrix of observations, where

and: are timesteps within the training data sequence:

Yo Y1 - Yj—1
Y= | Y (3.10)
Yi—1 Yi - Yiyj—2

mixj

Y, denotes a certain matrix of “past” observations, &jfddenotes its one-timestepten-

sion Also, Y, Y denote matrices of “future” inputs and observations and their one-step
contractions

Y, = Y0|z'—1 Y= Yo|z'

p

Yy =Yipi Yy =Yipia

Matrices of the above form, with each block of rows equal to the previous block but shifted
by a constant number of columns, are calidack Hankelmatrices P6]. We also define

a matrix of Kalman filter latent state estimates at timeonditioned on past observations
inYy,, asf(i:

~

Assuming the observations truly arise from an LDS, then the following relationship
between expected future observations, latent states and LDS parameters must hold:

C#;  Ciiy - Chj,
Czip1 CZige - Ci;
E{Y; | X;} = | Ciiyoa Ciyy -+ Cijn (3.12)
| Cigiy CZgi ... Cﬁ2i+j—2_mixj
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I'; is defined as thextended observability matrix

C
CA
r,= | CA? (3.13)

CAz'fl

L 4 mixn

I'; is related to its one-step contractibpn ; by:

L
i = , 3.14
CAL (3.14)
UsingI'; from equation §.13) in equation 8.12), E{Y} | X;} can be written as:
E{Y; | X;} = TuX; (3.15)

Note thatl';X; is a rankn linear function of state that lies ispan {Y,}. Thelinear
projectionof Y; ontoY,, may be used to find, X from Y; andY), whereX denotes the
Kalman filter states conditioned on observation¥jnThese Kalman filter state estimates

X, can be computed exactly in closed form as a linear functiaj, ¢# 7]. The projection
is obtained by solving a set of linear equations

Y;/Y, = ViY)Y, = VY, (Y)Y, (3.16)

where’ denotes the Moore-Penrose pseudo-inveisg [Define O;, O, asprojections
of future observations onto past observatiamghe following way:
O, =YY, =X, (3.17a)
Oip1 = YJ:/Y;r =T X (3.17b)
Subspace ID exploits relationships between several subspaces of interest to compute es-
timates ofX; andf(m. The rank ofQ; is the dimensionality of the state space, the row

space of®; is equal to the row space ¢f; and the column space @, is equal to the
column space of; [27]. Compute the SVD 00; :

O, =Uxy’ (3.18)
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By properties of SVD , we know the columnsdfare an optimal basis for compressing
and reconstructing sequences diiture observations.

As mentioned earlier, having multiple observations per columH/ims particularly
helpful for learning models of systems that are idtep observable, e.g. when the un-
derlying dynamical system is known to have periodicity and a single observation is not
enough to tell us where we are in the period. For example, Figja¢8) shows200 years
of sunspot numbers, with each month modeled as a separate variable. Sunspots are known
to have two periods, the longer of which i years. When subspace ID is performed
using al2-observation Hankel matriX; andY,, the first two columns of/, i.e. the first
two principal components a@;, resemble the sine and cosine bases (FiGui¢g)), and
the corresponding state variables therefore are the coefficients needed to combine these
bases so as to reconstrdetyears of the original sinusoid-like data, which captures their
periodicity. This is in contrast to the bases obtained by SVD diobservatiort’; andY,,
(Figure3.1(B)), which reconstruct just the variation within a single year.

ThoughY,, andY’; have finitely many observations from past and future, this window
size does not need to grow indefinitely for the algorithm to converge to the correct parame-
ter estimates. For any given dynamical system, there’s a minimum window length that will
allow us to recover the true dynamics. The minimum window length is the shortest one
in which we are guaranteed to have positive probability of observing something relevant
to each dimension of latent state. Note that we don’t need to guarantee a high probability
of making such observations, or to guarantee that our observations are particularly infor-
mative about state, only that there is a positive probability of getting a positive amount
of information. It is possible that the minimum window length is infinite, but then the
dimensionality of the dynamical system would need to be infinite as well, hence it would
a system that is difficult to recover with any method.

Subspace ID also allows a simple yet principled method of model selection: the order
of the system can be determined by inspectingsthgular valueson the diagonakt, and
all components whose singular values lie below a user-defined threshold can be dropped.
One common way of choosing the dimensionality is to look for a “knee” in the graph of
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decreasing-order singular values, indicating the noisy data arises from a low-rank system.
Then we estimatg;, I';_; and X; as:

I, =Ux/? (3.19)
which, based on equatiofi.(L4), allows us to estimatE;_;:

X, =Tlo; (3.20a)
X =T 0, (3.20b)

Here we useX; to denoteestimatesof the true Kalman filter statesX conditioned on
observations irY,,. An important result that allows Subspace ID to claionsistencys
that, as the number of columrisn our Hankel matrices go to infinity, the state estimates
converge to the true Kalman filter state estimates conditioned on observatign@imto

a linear transform)47):

Xi—i—l - Xi—i—l

After computing the estimates; and X, we can estimate the LDS parameterandC
by solving the following system of equations, which is straightforward:

~

Xit1
Yiji

A
C

%]+

Pu ] (3.21a)
Po

Here, p.,, p, are theresidual errorsof the noisy LDS, which are assumed to have zero-
mean Gaussian distributions. We can estimate the covarié}aadf% from the estimated

residuals:
E {

Since the state estimates converge to their true values, the parameter eﬂimét/és@, @, }A%}
are asymptotically unbiased as the length of the training sequences goes to ififihity [

piw] R ]} (3.21b)

Pv
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3.4 Stability

We describe stability of dynamical systems based on material ffain [Stability is a
property of dynamical systems defined in termseqtilibrium points If all solutions

of a dynamical system that start out near an equilibrium statetay near or converge

to z., then the state: is stable or asymptotically stable respectively. A linear system
xi11 = Az, (with zero noise) isnternally stableif the matrix A is stable in the sense

of Lyapunov (see below). Internal stability is sufficient, though not necessary, for the
stability of a dynamical system. The standard algorithms for learning linear Gaussian
systems described in Secti@B3 do not enforce stabilitywhen learning from finite data
samples, the maximum likelihood or subspace ID solution may be unstable even if the true
system is stable due to the sampling constraints, modeling errors, and measurement noise.
A square matrix4 is said to beasymptotically stable in the sense of Lyapuifoand

only if for a dynamics matrix4 and any given positive semi-definite symmetric mafpix

there exists a positive-definite symmetric matfixhat satisfies the followingtyapunov
criterion:

P—APAT =Q (3.22)

There is a direct connection to this criterion and the Kalman filter update in Equation
(3.3)(b). For a linear dynamical system,is the dynamics matrixP is the current belief
covariance, and) is the positive semi-definite state error covariance matrix (Equation
(3.8d). Thus, the Lyapunov criterion can be interpreted as holding if there exists a belief
distribution where the predicted belief over state is equivalent to the previous belief over
state. It is interesting to note that the Lyapunov criterion hdldsd only if the spectral
radiusp(A4) < 1. Recall that a matri¥/ is positive definite (semi-definitaff zTMz > 0

(> 0) for all non-zero vectors. Let A be an left eigenvalue ot andv be a corresponding
eigenvector, givingus'™ A = \vT, then

vVIQu=v'(P—ATPAw =v"Pv—v " AP\v=v"Pr(l — |A\]*) >0 (3.23)

sincev™ Pv > 0, it follows that|A\| < 1 and thusp(A4) < 1. Whenp(A) < 1, the system
is asymptotically stable. To see this, suppds&D~! is the eigen-decomposition of,
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where A has the eigenvalues of along the diagonal ané contains the eigenvectors.
Then,
lim A* = lim DA*D™' = D ( lim A’“) D=0 (3.24)

k—oo k—o0 k—oo

since it is clear thalim;_.., A* = 0. If p(A) = 1, thenA is stable but not asymptotically
stable, and the state oscillates around. indefinitely. However, this is true only under

the assumption of zero noise. In the case of an LDS with Gaussian noise, a dynamics
matrix with unit spectral radius would cause the state estimate to move steadily away from
z.. Hence such an LDS is asymptotically stable only whed) is strictly less than one,

and the matrix in equation 8.22) above is required to be positive definite p[fA) = 1,

the LDS is said to benarginally stable

3.5 Related Work

The EM algorithm for LDS was originally presented ii¥]. Auto-Regressive (AR), Mov-

ing Average (MA) and Auto-Regressive Moving Average (ARMA) models are simpler
time series modeling methods that are provably subsumed by LEZx$sNonlinear dy-
namical systems and their learning algorithms have also been studied, suckdstioed
Kalman filter [35, 36] which linearizes the nonlinear system around the state estimate
at every step, allowing the approximate state distribution to remain Gaussian. An EM
algorithm for learning nonlinear dynamical systems has also been propékeahich

uses Extended Kalman Smoothing to compute the non-Gaussian conditional hidden state
distribution over the nonlinear dynamical system, and Radial Basis Functions (RBFs) to
represent the nonlinearities.
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Chapter 4

Fast State Discovery and Learning in
Hidden Markov Models

We first look at an algorithm for learning discrete-state LVMs with continuous observa-
tions, specifically Gaussian HMMs. Typical algorithms for learning HMMs rely on know-
ing the correct value for the number of states beforehand, and then optimizing the observed
data likelihood for a fixed number of states, until a local optimum is reached. In contrast,
STACS (Simultaneous Temporal and Contextual Splitting) reformulates the search space
by incrementally increasing the number of states (by splitting an existing state) during
parameter optimization in a way that maximally improves observed data likelihood. The
algorithm terminates when the improvement in explanation of the data by further HMM
growth no longer justifies the increase in model complexity, according to a standard model
selection scoring criterion. Both the splitting and scoring processes are carried out effi-
ciently by selective application of Viterbi approximations. This process makes parameter
learning more efficient and also helps avoid the local minima which greatly hinder fixed-
topology HMM learning algorithms, particularly for large state spaces.
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4.1 Introduction

There has been extensive work on learning the parameters of a fixed-topology HMM. Sev-
eral algorithms for finding a good number of states and corresponding topology have been
investigated as well (e.g.37, 38, 39)), but none of these are used in practice because
of one or more of:inaccuracy high computational complexityr being hard to imple-

ment Normally, the topology of an HMM is chosempriori and a hill-climbing method

is used to determine parameter settings. For model selection, several HMMs are typi-
cally trained with different numbers of states and the best of these is chosen. There are
two problems with this approach: firstly, training an HMM from scratch for each feasi-
ble topology may be computationally expensive. Secondly, since parameter learning is
prone to local minima, we may inadvertently end up comparing a ‘gogdstate HMM

to a ‘bad’m,-state HMM. The standard solution to this is to train several HMMs for each
topology with different parameter initializations in order to overcome local minima, which
however compounds the computational cost and is ineffectual for large state spaces. For
example, Figurel.1(A) shows a simple data sequence where many training algorithms
can get caught in local minima. To illustrate the concepts we discuss, we shall use this
example throughout this chapter.

Because of these issues, many researchers have previously investigated top-down state-
splitting methods as an appealing choice for topology learning in HMMs with continu-
ous observation densities. This chapter descr&ssiltaneous Temporal and Contextual
Splitting (STACS), a recently proposed(]] top-down model selection and learning algo-
rithm that constructs an HMM by alternating between parameter learning and model selec-
tion while incrementally increasing the number of states. Candidate models are generated
by splitting existing states and optimizing relevant parameters, and are then evaluated for
possible selection. Unlike previous methods, however, the splitting is carried out in a way
that accounts for botlontextual(observation density) an@mporal(transition model)
structure in the underlying data in a more general manner than the state-splitting methods
mentioned above, which fail on the simple example in FiguéA). In this research, we
closely examine these competing methods and illustrate the key differences between them
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and STACS, followed by an extensive empirical comparison. Since hard-updates training
is a widely used alternative to soft-updates methods in HMMs because of its efficiency,
we also examine a hard-updates version of our algoritfitarbi STACV-STACS), and
explore its pros and cons for model selection and learning with respect to the soft-updates
method. We also evaluate STACS as an alternative learning algorithm for mogets- of
determinedsize. To determine the stopping point for state-splitting, we us@#yesian
Information Criterion[41], or BIC score. We discuss the benefits and drawbacks of this
in Section4.3.2 We compare our approach to previous work on synthetic data as well
as several real-world data sets from the literature, revealing significant improvements in
efficiency and test-set likelihoods. We compare to previous algorithms on a sign-language
recognition task, with positive results. We also describe an application of STACS to learn-
ing models for detecting diverse events in real-world unstructured audio data.

Throughout this chapter, assume the HMM notation introduced in Chapter

'“qu‘ ‘“W
\
?MT T M \f
& f
(A) (B) ©

Figure 4.1: A. A time series from&astate HMM. Observations from the two statksvn-
middle-upandup-middle-dowroverlap and are indistinguishable without temporal infor-
mation. B. The HMM topology learned by ML-SSS and Li-Biswas on the data in A. C.
The correct HMM topology, successfully learned by the STACS algorithm.
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4.2 Related Work

There has been extensive work on HMM model selection. However, most of this work is
either tailored to a specific application or is not scalable to learning topologies with more
than a few states. The most successful approaches are greedy algorithms that are either
bottom-up (i.e., starting with an overly large number of states) or top-down (i.e., starting
with a small or single-state model). We will briefly discuss the bottom-up approaches and
argue that they are unsuitable for practical large-scale HMM model selection as compared
to top-down approaches. After this, we will discuss the major top-down approaches from
the literature in more detail.

The primary drawbacks of bottom-up techniques are (a) having to choose and evalu-
ate merges from amomj? candidate pairs, (b) having to know the maximum number of
states beforehand and (c) difficulty in generalizing to real-valued observations. Bottom-up
topology learning techniques start off with a superfluously large HMM and prune para-
meters and/or states incrementally to shrink the model to an appropriate size. Stolke and
Omohundro 427] demonstrate a Bayesian technique for learning HMMs by successively
merging pairs of states for discrete-observation HMMs, followed by Baum-Welch to opti-
mize parameter settings. Their model-merging technique starts off with one state for each
unique discrete-valued observation, uses a heuristic to pick the top few merge candidates
to evaluate. Another bottom-up approach is the Entropic Training technique of Brand
[39. This technique uses an entropy-based prior that favors simpler models and relies on
an iteratively computed MAP estimator to successively trim model parameters. Though
the algorithm applies to real-valued observations and does not require the computation of
merges, it is complex, and the problem of having to start with a good upper boulNd on
still holds true.

We therefore favor top-down methods for HMM model selection, especially when the
number of states may be large. We define some terminology $ipdit: designrefers to
the process of splitting an HMM state, optimizing parameters and creating an HMM for
possible selection. HMMs created by designing different splits are cadledidates The
two major alternative top-down approaches can be summarized as follows:
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Figure 4.2: An illustration of the overly restrictive splits in ML-SSS. A. Original un-split
stateh*. B. A contextual splibf 4* in the ML-SSS algorithm. Statég andh; must have
thesametransition structures and different observation models. @myporal split State

ho has the incoming transition model bf andh, has its outgoing ones.

Li-Biswas: This algorithm 7] examines two model selection candidates at every step:
one obtained by splitting the state with largest observation density variance, and the other
by merging the two states whose means are closest in Euclidean space. These candidates
are then optimized with EM on the entire HMM. The candidate with better likelihood is
chosen at each step, terminating when the candidates are worse than the original model.
The primary drawback with this heuristic is that it ignores dynamic structure while de-
ciding which states to split: a single low-variance state might actually be masking two
Markov states with overlapping densities, making it a better split candidate. Training two
candidates with full EM is also inefficient especially when they may not be the best can-
didates, as our empirical evaluations will show.

ML-SSS: Maximum-Likelihood Successive-State-Splittjifig] is designed to learn
HMMs that model variations in phones for continuous speech recognition systems. ML-
SSS incrementally builds an HMM by splitting one state at a time, considering all
possible splits as candidates in each timestep. However, instead of full EM for each can-
didate, the split on staté* into ho andh; (figure4.2) is trained by a constrained iterative
optimization of the expected likelihood gain from performing the split, while holding all
v:(h) and;(h, h') constant forh, b’ # h*. The iterations are performed over all timesteps
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t with non-zerd posterior occupancy probability fér . Each state is considered for two
kinds of splits, acontextual spli{Figure4.2(B)) that optimizes only observation densities,
and atemporal split(figure4.2(C)) that also optimizes self-transition and inter-split-state
transition probabilities.

Though more efficient than brute-force and Li-Biswas, the fact that ML-SSS does not
model transitions to and from other states while splitting makes it fail to detect underlying
Markov states with overlapping densities. For example, ML-SSS with BIC converges on
the HMM in figure4.1(B) while the true underlying HMM, successfully found by STACS,
is shown in figuret.1(C). Also, having to consider all data points with non-zero posterior
probability~,(h*) on every split is expensive in dense data with overlapping densities.

4.3 Simultaneous Temporal and Contextual Splits

STACS is based on the insight that EM for sequential data is more robust to local min-
ima for small state spaces (e.g. two states) but less so for large state spaces. STACS uses
this insight to use a constrained two-state EM algorithm to break out of local minima and
increase state space size. STACS algorithms perform parameter learning for continuous-
density HMMs with Gaussian observation models, while simultaneously optimizing state
space size and transition topology in a data-driven fashion. Unti&e ¢ur method ac-
counts for both temporal and contextual variations in the training observations while split-
ting states (i.e. increasing the state space size). Uniie pur method evaluates every
existing state as a possible candidate for splitting. Since naively evaluating all possible
ways to increase state space size would be very expensive computationally, STACS algo-
rithms make selective use Witerbi approximation$4 2, 43] for efficient approximation of

the data log-likelihood, as well as some other assumptions detailed below. These approx-
imations keep the complexity of each iteration of STACS and V-STACS t®fen?),

with V-STACS being faster by a constant factor that is quite noticeable in practicerHere

is the length of the training sequence ands the number of states currently in the HMM.

In practice, non-zero corresponds to being above a specified cutoff value
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Experiments show that STACS outperforms alternative topology learning methgds [

] in terms of running time, test-set likelihood and BIC score on a variety of real-world
data, and outperforms regular EM even on learning models of predetermined size. This
top-down approach proved to be highly effective at avoiding local minima as well, allow-
ing STACS to discover the true underlying HMM in difficult synthetic data where EM
failed to find the correct answer even wiih restarts. This highlights the problem with
cross-validation for determining the number of states, which we alluded to in Séction
due to the local minima problems rife in EM-based HMM learning, there is no way to
ensure during cross-validation that the best possible HMMs of different sizes are being
compared. STACS avoids this problem by guaranteeing a consistent increase in data likeli-
hood as it searches the space of HMMs of varying state space sizes, based on monotonicity
results regarding variants of the EM algorith#].

We describe the overall algorithm as well as details of STACS and V-STACS below.
First, some notation: when considering a split of stgtelMM parameters related to state
h (denoted by),), including incoming and outgoing transition probabilities, are replaced
by parameters for two offspring statés and, (denoted by, 5,). The time indices
assigned to statg, denoted byr(h), are now assumed to have unknown hidden state
values, but only in the restricted state spdée, ho}. Therefore when searching for a
locally optimal candidate, only the parameteys ;, change, and the only observations
that will affect them are those at timestefis), i.e., X ;. Let A\, denote parameters not
related to staté.

4.3.1 The Algorithm

STACS and V-STACS both have the following overall procedure. For each step that is
not constant-time, we list the asymptotic complexitie$ jasr as|-, -] respectively if they

differ. Details on candidate generation and candidate selection are given in subsequent
sections.

1. Initialization: Initialize A to a single-state HMMi, = 1) using X. [O(7)]
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2. Learning Use Baum-Welch or Viterbi Training until convergence BfX | Al.
[O(rm?)]

3. Candidate GeneratiorSplit each state, to generate candidate HMMs each with
m + 1 states[O(rm?), O(Tm)]

4. Candidate SelectionScore the original HMM and each candidate, and pick the
highest scoring one ag. [O(m?), O(tm)]

5. Repeat or Terminatdf a split candidate was picked,« )\, m <« m + 1 and go to
step 2. Else if original HMM was picked, terminate and retitn

4.3.2 Generating Candidates

To generate a candidate based on statesulting in new states; and h,, we devised

two novel variants of EM to efficiently compute optimal means, variances and transition
parameters of the resulting states. We first perform Viterbi to find the optimal state
sequence?* by maximizingP(X, H | \). We then constrain the parameters for all other
states §\,). We assume all timesteps belonging to other stat€g*iare associated with
those states exclusively, which is equivalent to approximating the posterior belief at each
timestep by a delta function at the Viterbi-optimal state. Then, we perfpiit-State
Viterbi Training (for V-STACS) orSplit-State Baum-Weldfior STACS) to optimize\,, ,

on the timesteps associated with statee. X ,y. This effectively optimizes gartially
observed likelihood”(X, Hy ;) | A).

Candidate generation is highly efficient: Split-State Viterbi Trainingigr(h)|),
Split-State Baum-Welch i€ (m|7(h)|). Since|r(h)| is equal tor/m on average, and
there aren candidates to be generated, the total coét(is:7) andO(rm?) respectively.

Split-State Viterbi Training

Split-State Viterbi Training is the candidate generation algorithm for V-STACS. The algo-
rithm learns locally optimal values for the parametgjs,, by alternating the following
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two steps for each iteratiaruntil convergence:

M-step : Ai:}hz — arg maxy P(X.), HTT(h),Hi(h) | A\, A)

Here, HY, denotes the base model Viterbi path excluding timesteps belonging to state
h. The first step above computes an optimal path through the split-state space. The second
step updates the relevant HMM parameters with their MLE estimates for a fully observed
path, which are simply ratios of counts for transition parameters, and averages of subsets
of X, for the observation parameters. Convergence occurs when the state assignments
on 7(h) stop changing. The E-step of Split-State Viterbi Training is carried out using

a novel adaptation of Viterbi (calle8plit-State Viterhito the task of finding an opti-

mal path over a binary state space through a subset of the data while constraining the
rest to specific states. Given below is pseudocode for the Split-State Viterbi algorithm.
Split-State Viterbf\, H*, 7", X .»)

Initialization: Increase the number of states in the HMM by 1. Initialize new para-
meters for states; andh, that replace state. For all other stated’ and fori, j = 1, 2:

Th, %Tfh

Tn, — 5Twn

Thin < Thw

Thihj — %Thh

Oy, « initialize to MLE Gaussian using’,; plus noise

Loop: fork =1...|7(h)|
t — 7(h)[k]
if t == Il t is thel® timestep
then for:i € {1,2}
0 (i) < mn, O, (1)
Y(E) — —1
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elseif(t — 1) == 7(h)[k — 1] Il the previous timestep is also being optimized
then fori € {1,2}

0y (i) + [maxjeq1,2y 071 (5) T | Ony (1)

Pp (i)  arg maxjeqi,2y 0y (4)Thy,
else fori € {1,2}  // the previous timestep belongs to a different stgite

0t (i) < Ty Ong (1)

Termination:
For all subsequences ofh) that are contiguous ifil . . . 7}, backtrack throughy” from
the end of the subsequence to its beginning to retrieve the corresponding potign of

returnH;.

The running time is clearly linear in the number of non-determined timetépy since

each maximization in the algorithm is always oveelements no matter how large the
actual HMM gets. Note that we allow the incoming and outgoing transition parameters
of hy, hy to be updated as well, which allows better modeling of dynamic structure during
split design.

Split-State Baum-Welch

Split-State Baum-Welch also learns locally optimal values for the state-split parameters
Ay hey @Nd like Baum-Welch it does so by modeling thesterior over the hidden state
space which in this case consists{af;, h,}. The following two steps are repeated for
each iteration until convergence:

1. E-step: Calculate stepwise occupancy and transition probabflitieg”} from
{0 Ay g X () 1Y 1y 13 COMPpUte expectations.

2. M-step:
{)\hth}H—l <— arg maxy P(XT(h), HTT(h) | )\\h, )\)
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The E-step step is carried out using a specialized two-state partially-constrained-path ver-
sion of the forward-backward algorithm to first calculate the forward and backward vari-
ables, which then give the requiretl and¢” values forh, andh,. The idea is the same as
Split-State Viterbi but with soft counts and updates. The entire algoritt®{is|7(h)|),

since the update step requires summations over all observatiar{@ )rfor at leastm
transition parameters. Since it is not possible to compute the updated overall likelihood
from this split algorithm, convergence of Split-State Baum-Welch is heuristically based on
differences in the split-state variables in successive timesteps.

Though slower, Split-State Baum-Welch searches a larger space of candidate models
than Split-State Viterbi Training, performing better on ‘difficult’ splits (such as the one
required in Figuret.1 with high hidden variable entropy) just as Baum-Welch performs
better than Viterbi Training in such situations.

4.3.3 Efficient Candidate Scoring and Selection

We compare candidatesnongst each otharsing the fast-to-compute Viterbi likelihood
after optimizing the split parameters. Afterwards, as we described earlier, we compare
the best candidate tihe original modelusing BIC score41] (a.k.a.Schwarz criterioi,

an efficiently computable approximation of the true posterior probability. The latter is
intractable since it involves integrating over exponentially many possible models. The
BIC score is an asymptotically accurate estimate (in the limit of large data) of the pos-
terior probability of a model when assuming a uniform prior. A Laplace approximation
is applied to the intractable integral in the likelihood term, and terms that do not depend
on data set size are dropped to obtain the approximated posterior log-probability. BIC
effectively punishes complexity by penalizing the number of free parameters, thus safe-
guarding against overfitting, while rewarding goodness-of-fit via the data log-likelihood.
Let #\ denote the number of free parameters in HMMRecall thatr denotes the length

of the data sequence, andlenotes the number of discrete observations (or dimensionality
of the real-valued observation vector). Then,

log(mn)

BIC(X, X) = log P(X | ) = ==

HN
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For V-STACS, the likelihood is approximated by the Viterbi path likelihood using the
Viterbi approximation[42, 43]. The unsplit model Viterbi path can be updated efficiently
to compute the Viterbi paths and Viterbi path likelihoods for each candidat¥-ifim)
amortized time, and hene®(7) total. This avoids an extr@(rm?) step in V-STACS, and
keeps the complexity of V-STACS’ candidate generation, scoring and selectidiwat).

BIC as defined holds for probabilistic models with observable random variables. More
recent work has shown that the effective dimensiolat#nt variableBayesian Networks
is equal to the rank of the Jacobian of the transformation between the parameters of the
latent variables and the parameters of the observable variakifpsJsing the number
of free parameters is a reasonable approximation since this corresponds to the maximum
possible rank, and regular BIC with this measure has been successfully used for model
selection in HMMs in previous work3[/]. Nonetheless, due to the approximate nature of
BIC for latent-variable modelsif] or for high-dimensional data, test-set log-likelihood
would be a more accurate though more computationally expensive scoring criterion for
splits.

4.4 Experiments

In our experiments we seek to compare STACS and V-STACS to Li-Biswas, ML-SSS, and
multi-restart Baum-Welch, in these areas:

1. Learning models of predetermined size
2. Model selection capability

3. Classification accuracy for multi-class sequential data

For (1) and (2), we are concerned both with the quality of models learned as indicated by
test-set likelihoods (for learning predetermined-size models) and BIC scores (for learning
state space dimension), as well as running-time efficiency. For (3), we examine sequential
data where each sequence is associated with a distinct class label. For such data, HMMs
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have been successfully used in previous applications (e.g. speech recogij)tiorcpn-
struct aclassifierby training class-specific HMMs on sequences from different classes,
and using their likelihood scores on test-set sequences for classification. We will follow
the same procedure for the multiclass sequential data we examine.

4.4.1 Algorithms and Data Sets

As described earlier, STACS uses Baum-Welch for parameter learning and Split-State
Baum-Welch for split design. V-STACS uses Viterbi Training and Split-State Viterbi
Training, followed by Baum-Welch on the final model. We also implemented ML-SSS
(with a tweak for generalizing to non-chain topologies) and Li-Biswas for comparison.

We choose a wide range of real-world datasets that have appeared in previous work
in various contexts, the goal being to examine the ability of our algorithms to uncover
hidden structure in many different, realistic domains. The dimensionality of all datasets
was reduced by PCA tofor efficiency, except for the Motionlogger dataset which is 2-D.
The AUSL and Vowel data sets are from the UCI KDD archi#g][ We list the data sets
with (training-set, test-set) sizes below.

Robot: This data set consists of laser-range data provided by the Radish Robotics Data
set Repository47] gathered by a Pioneer indoor robot traversing multiple runs
of a closed-loop set of corridors in USC’s Salvatori Computer Science building.
This data set has appeared in previous work in relation to a robot localization task.
Among the four runs of data provided we used three for trainig9s2 observa-
tions) and one for testingt(052 observations).

Mlog: This data set consists of real-valued motion data from two wearable accelerometers
worn by a test subject for a period of several days during daily routine. The training
set and test set contair), 000 and4, 720 observations respectively. This data set
was previously appeared in a paper on large-state-space HKtylarid allows us
to compare our test-set likelihoods with previous results.

Mocap: This is a small subset of real-valued motion capture data gathered by several
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Table 4.1: Test-set log-likelihoods (scaled by dataset size) and training times of HMMs
learned using STACS,V-STACS, ML-SSS and regular Baum-Welch witrandom
restarts. The best score and fastest time in each row are highlighted. Li-Biswas had similar
results as ML-SSS, and slower running times, for thesghere it completed successfully.

Data | STACS V-STACS ML-SSS Baum-Welch STACS V-STACS ML-SSS Baum-Welch
m=2>5 m = 40
ROBOT | -2.41 -2.41 -2.44 -2.47 -1.75 -1.76 -1.80 -1.78
40s 13s 70s 99s 11790s 1875s  16048s 18460s
MOCAP | -4.46 -4.46 -4.49 -4.46 -4.32 -4.29 -4.30 -4.37
34s 14s 49s 65s 5474s  1053s 6430s 7315s
MLOG | -8.78 -8.78 -10.49 -8.78 -8.25 -8.26 -10.49 -8.38
67s 15s 9s 750s 29965s 8146s  1818s 42250s
AUSL -3.60 -3.60 -3.60 -3.43 -2.89 -2.77 -3.08 -2.99
39s 14s 33s 110s 7923s  1550s 8465s 22145s
VOWEL | -4.69 -4.69 -4.68 -4.67 -4.34 -4.32 -4.44 -4.33
13s 8s 37s 95s 2710s 1011s 2874s 6800s
m = 20 m = 60
ROBOT | -1.93 -1.93 -1.98 -1.96 -1.65 -1.64 -1.69 -1.75
2368s 512s 2804s 4890s 38696s 6086s 51527s 35265s
MOCAP | -4.38 -4.37 -4.33 -4.33 -4.23 -4.26 -4.23 -4.46
899s  203s 800s 3085s 16889s 3470s  18498s 20950s
MLOG | -8.34 -8.34 -10.49 -8.40 -8.25 -8.23 -8.29 -8.39
3209s 1173s 284s 12350s | 116891s 29379s 108358s 87150s
AUSL -3.16 -3.18 -3.21 -3.13 -2.71 -2.71 -2.86 -2.89
1128s 284s 1410s 3655s 23699s 4613s  25156s 60035s
VOWEL | -4.40 -4.41 -4.44 -4.41 -4.30 -4.31 -4.44 -4.31
548s  189s 1009s 1285s 8296s 2714s 4407s 13360s

42




human subjects instrumented with motion trackers and recorded by cameras while
performing sequences of physical movements. It appears in previous ¥Wdrk [

in the context of a classification task on natural and unnatural motion sequences;
the best model for the task was found to be an HMM ensemble model and the state
spaces required ranged fraith— 60 to 180 states, which makes it a natural candidate
for inclusion here. We use a training set of sife028 and test set of siz& 159.

AUSL: This data set consists of high-quality instrumented glove readings of Australian
sign-language words being expressed by an expert signer. The data set contains 27
repetitions each of 95 different words, with each sign consisting of around 50 22-
dimensional observations. Here we concatenate signings of 10 different words to
form a training set of siz&3, 435 and a test set of size 771.

VOWEL: This data set consists of multiple utterances of a particular Japanese vowel by
nine male speakers. We broke it up into training and test sets2Gfl and5, 687
datapoints each.

Synthetic data: We generated synthetic data sets to examine the ability of our algorithms
to uncover the true number of states.

4.4.2 Learning HMMs of Predetermined Size

We first evaluate performance in learning models of predetermined size. Inflabie

show test-set log-likelihoods normalized by data set size along with running times for
experiments using STACS and V-STACS along with ML-SSS and regular Baum-Welch
with 5 restarts. Figuré.4shows a subset of the same data in a more visually interpretable
form for them = 40 case. Here we ignore the stopping criterion and perform the best split

at each model selection step until we reacktates. For Baum-Welch, the best score from

its five runs is given along with the total time. Li-Biswas results are not shown because
most desired model sizes were not reached. However, the instances that did successfully
complete indicate that Li-Biswas is much slower than any other method considered, even
Baum-Welch, while learning models with similar scores as ML-SSS.
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Table 4.2: BIC scores scaled by dataset size (anthber of statespf final models chosen
by STACS, V-STACS, Li-Biswas and ML-SSS. STACS and V-STACS consistently find
larger models with better BIC scores, indicating more effective split design.

Dataset | STACS V-STACS Li-Biswas ML-SSS
ROBOT | -1.7939) -1.81(34) -1.9918) -2.01(15)
MOCAP | -3.5436) -3.5533) -3.6920) -3.9210)
MLOG | -8.4414) -8.4520) -8.5911) -10.511)
AUSL -2.7744) -2.7942) -2.9231) -3.0428)
VOWEL | -4.4717) -4.4916) -4.4817) -4.941)

We note that STACS and V-STACS have the fastest running times for any given HMM
size and data set, except for cases when a competing algorithm got stuck and terminated
prematurely. Figurel.3(A) shows a typical example of STACS and V-STACS running
times compared to previous methods for differentalues.

Asm grows larger and the possibility of local minima increases, STACS and V-STACS
consistently return models with better test-set scores. FigL{8) shows training-set
score against running time for theoRoOT data form = 40. This is especially remarkable
for V-STACS which is a purely hard-updates algorithm. One possible explanation is that
V-STACS'’ coarseness helps it avoid overfitting when splitting states.

4.4.3 Model Selection Accuracy with BIC

The final BIC scores and: values of STACS, V-STACS, Li-Biswas and ML-SSS are
shown in Tablet.2when allowed to stop splitting autonomously. Note that the exact BIC
score was not used by V-STACS, just calculated for comparison. FigGmesents part

of the data in more visually interpretable form. In all cases, STACS converges on models
with the highest BIC score. For the IMG data, STACS achieves a better BIC score
even with a smaller model than V-STACS, indicating that the soft-updates method found a
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particularly good local optimum.

The consistent superiority of STACS here may seem to contradict results from the
previous section where STACS and V-STACS were seen to be more comparable. A pos-
sible reason is that V-STACS uses the Viterbi path likelihood (which is computed during
hard-updates training anyway) in place of the true likelihood in BIC. This is done to keep
V-STACS as efficient as possible. However the resulting approximate BIC seems to under-
value good splits, resulting in early stoppage as seen here. We can conclude that, though
the Viterbi approximation works well for state-splitting, the true likelihood is preferable
for model selection purposes when using BIC.

4.4.4 Discovering the Correct Topology

We already saw that STACS is able to learn the correct number of states in the simple
example of Figuret.1l, while Li-Biswas and ML-SSS are not. We generalized this ex-
ample to a larger, more difficult instance by generating @00 point synthetic data set
(Figure4.6(A)) similar to the one in Figuré.1but with 10 hidden states with overlapping
Gaussian observations.

Even on this data, both STACS and V-STACS consistently found the true underlying
10-state model whereas Li-Biswas and ML-SSS could not do so. Interestingly, regular
Baum-Welch on al0-state HMM also failed to find the best configuration of thése
states even after 50 restarts. This reinforces a notion suggested by results in &dction
even in fixed-size HMM learning, STACS is more effective in avoiding local minima than
multi-restart Baum-Welch.

4.4.5 Australian Sign-Language Recognition

Though improved test-set likelihood is strong evidence of good models, itis also important
to see whether these model improvements translate into superior performance on tasks
such as classification. HMMs play one of their most important roles in the context of
supervised classification and recognition systems, where one HMM is trained for each
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Table 4.3: Australian sign-language word recognition accuracy on a 95-word classification
task, andaverage HMM sizeon AUSL data.

STACS V-STACS Li-Biswas ML-SS$
90.9% 95.8% 78.6% 89.5%
12.5 55 8.3 8.5

distinct sequence class. Classification is carried out by scoring a test sequence with each
HMM, and the sequence is labeled with the class of the highest-scoring HMM.

One such classification problemastomatic sign-language recogniti¢aC]. We test
the effectiveness of our automatically learned HMMs at classification of Australian sign
language using the AUSL datasé{.[ The data consists of sensor readings from a pair
of Flock instrumented gloves (Figu¥e6(B)), for 27 instances each @ distinct words.
Each instance is roughly 55 timesteps. We retainedthe, z, roll, pitch, yaw) signals
from each hand resulting ih2-dimensional sequential data. We trained HMMs on an
8:1 split of the data, using STACS, V-STACS, Li-Biswas and ML-SSS. Téldeshows
classification results along with average HMM sizes. V-STACS yields the highest accuracy
along with much larger HMMs than the other algorithms.

4.5 Application: Event Detection in Unstructured Audio

Analysis of unstructured audio scene data has a variety of applications suethas:
musicologyi.e., music classification based on cultural stylé]{ audio diarization i.e.,
extraction of speech segments in long audio signals from background sdtsdadio
event detectiofi3] for audio mining;acoustic surveillancg>4], especially for military
and public safety applications, e.g, in urban search and rescue scenaribanzanrobot
interaction[55], for voice activated robot actuation and control.

For all these applications, accurate separation of speech from non-speech signals, or
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background noise, is a fundamental task that can be effectively solved by applying var-
ious sequence classification algorithms. One very popular and effective classification
scheme 6] is based on HMMs. HMMs can capture the underlying hidden states in the
time-series audio data and also model the transitions in these states to represent the under-
lying dynamical system. Traditionally, HMMs for these applications have been learned
by using iterative parameter learning approaches such as Baum-Welch {EMYIpile

these approaches have had some success, due to limitations of Baum-Welch they have
also struggled with issues of computational complexity, reliability and scalability. One
reason for this is that Baum-Welch does not aid in the discovery of an appropriate number
of states, which is usually done heuristically or exhaustively. Since new data is obtained
rapidly and the setting can change over time, HMM training has to be highly efficient for
this application, in addition to being accurate. We applied STACS and V-STACS to the
task of learning models for detecting a variety of phenomena from raw audio data over
time. The data was obtained from MobileFusion, Inc., a Pittsburgh-based company which
(at the time this research was undertaken) was developing a commercial audio-event de-
tection software along with an underlying hardware platform. Here we describe the results
of this application.

4.5.1 Data and Preprocessing

Figure4.7(A) shows the portable sensor platform where real-time audio-event detection

is to be carried out. For our experiments, audio examples were collected using the de-
vice shown in Figurel.7(B), and were selected with the intent to cover a wide variety of
sounds representative of the respective classes of audio events. For instance, the examples
produced to support Human class models included instances of male, female and children
voices speaking in various languages and environments including offices, coffee shops
and urban outdoors. The Animal class examples included sounds of dogs, owls, wolves,
coyotes, roosters and birds. The class of Ground Vehicles included sample sounds of mo-
torcycles, cars and trucks passing by. The Aerial Vehicles, our smallest class with just 20
samples, included sounds of jets and helicopters. The Explosions class included sounds of
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machine-gun fire, grenade blasts and gunshots. The Background class covers other sounds
such as ocean waves, city traffic, rain, thunder, crowds plus some silence samples. Details
of the data are given in Table4.

Since elaborate, computationally expensive feature extraction methods are not possible
during online audio event detection, we applied minimal preprocessing to the raw sound
recordings in order to prepare data for audio scene experiments. We extracted a set of 13
Mel-frequency cepstral coefficients (which is efficient) followed by assigning class labels
to each of the examples. The cepstral features were then averaged every 5 timesteps to
reduce noise and the resulting values were scaled up by a factor of 10 to avoid numerical
issues in the multivariate Gaussian code.

Table 4.4: Data Specifications. The last row shows the total number of samples, overall
average number of timesteps per sample, and total duration in minutes and seconds.

Class %  #samples Av.len. (T) Duration
Human 27 128 209 40:11
Animal 17 78 37 4:58
Ground V. 17 79 47 6:57
Aerial V. 4 20 54 2:16
Explosion 18 87 11 1:34
Backgrnd. 17 83 21 12:58
100% 475 78 68:54
45.2 Results

The classifier was tested using 4-fold cross-validation on the dataset described above. Fig-
ure4.8and Tabletl.5summarize the results. We trained HMMs on the data using STACS,
V-STACS and EM (Baum-Welch). We used the number of states discovered by V-STACS
for EM, which were 56, 26, 26, 18, 14 and 34 on average for the 6 classes respectively. To
help EM escape local minima, we re-initialized it 5 times from different random starting
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points. Training was carried out on a 1.8GHz CPU with 4GB RAM. In Figh&¢A),

the training times are plottad log scaleof minutes, since the disparity between EM and
our algorithms was so large. For example, for the Background class, V-STACS took 166
minutes, STACS took 243 minutes, and EM took 1023 minutes, despite having to only
learn parameters for a fixed HMM size.

We now look at classification accuracy. We focus on the classification accuracy results
of V-STACS vs. EM. STACS results were similar to V-STACS though slightly poorer in
some cases. Figure8B) shows these results for each of the 6 classes, which shows that
V-STACS is consistently more accurate than EM, except for labels such as Explosions
and Background. We believe this is partly due to lack of sufficient training data (note in
Table4.4 that these classes had the shortest average sample lengths)4 Badblews the
confusion matrices for models trained using EM (top) and V-STACS (bottom) respectively.
For each pair of actual and predicted labels, the better value of the two tables is listed
in bold (higher is better on diagonal, lower is better off-diagonal). Due to the highly
unstructured, diverse and in some cases insufficient data, neither algorithm is consistently
accurate. However V-STACS has better results on the whole, particularly for the Human
class which is of particular interest in this application. Some of the false negatives and
false positives seen in the confusion matrix can be addressed by using non-uniform priors
during classification, to compensate for the large degree of class imbalance.

4.6 Discussion

Part of the contribution of this work is empirical evidence for the conjecture that better
modeling of state context compensates more than adequately for considering fewer data
points per split in hidden state discovery. In addition, we investigated whether improved
dynamic modeling in split design can also compensate for approximating hidden state
beliefs by less precise, more efficient hard-updates methods via the V-STACS algorithm.
Evaluations show that even V-STACS produces models with higher test-set scores than
soft-updates methods like ML-SSS, Li-Biswas and Multi-restart Baum-Welch. The com-
putational efficiency of our methods can make a big difference in a number of practical
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Table 4.5: Average Confusion Matrix for EM (top) and V-STACS (bottom). Actual (rows)
vs Predicted (columns). Each entry is a percentage of test data averaged over the cross-
validation runs, and each row sums to 100. For each entry, the better entry of the two
tables is inbold. Ties are intalics.
H A GV. AV E B
H. 9269 468 O 0 0 2.34
A. 17.10 7368 O 131 O 7.89
G.V. 921 394 69.73 2.63 2.63 11.84
A.V. 5 0 15.00 75 5 0

E. 952 119 833 O 75 5.95
B. 15 8.75 5 0 375 675
H. 96.09 243 078 O 0.78 0
A. 1710 8157 O 0 1.31 0
GV. 921 394 7236 0 394 10.52
A.V. 5 0 500 80 10 0
E. 1428 238 4.76 238 72.61 3.57

B. 13.75 1125 75 O 3.75 63.75

applications such as audio event-detection (SeetiBn where frequent on-the-fly retrain-
ing is often necessary.

An interesting phenomenon observed is that STACS and V-STACS consistently re-
turn larger HMMs (with better BIC scores) than ML-SSS and Li-Biswas when stopping
autonomously. One possible interpretation is that the split design mechanism continues
to find ‘good’ splits even after the ‘easy’ splits are exhausted. An illustration of this
for the Mocap data is in Figuré.3.C. This makes sense considering that model selec-
tion and parameter optimization are closely related; since parameter search is prone to
local minima, determining the best size of a model depends on being able to find regions
of parameter space where good candidate models reside. Similarly, it is surprising that
that V-STACS yielded the highest classification accuracy in the sign-language recognition
task (Sectiont.4.5, that too with much larger final HMMs than any other algorithm. V-
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STACS also performed slightly better in the audio event detection task (Séciomore
investigation is needed in this area to see if these two things hold true in other sequence
classification domains, and if so then why.

Previous work for finding the dimensionality of HMMs withiscrete-valuedobserva-
tions [4Z] and other Bayesian Networks with discrete observatiérigfjas demonstrated
that hard-updates model selection algorithms can yield much greater efficiency than soft-
updates methods without a large loss of accuracy. To our knowledge, however, this is the
first work that demonstrates hard-updates model selection to be competitsentiomu-
ousobservations (Sections4.2 4.4.5. One possible explanation is that the coarseness
of hard-updates splitting helps avoid overfitting early on which might otherwise trap the
algorithm in a local optimum. It should also be noted that STACS can be generalized to
model selection in Dynamic Bayesian Networks or other directed graphical models that
have hidden states of undetermined cardinality, since the sum-product and max-product
algorithms for inference and learning in these models are generalizations of the Baum-
Welch and Viterbi algorithms for HMMs.

Results from Sectioné.4.2and4.4.4indicate that STACS is also a competitifireed-
size HMM learning algorithncompared to previous approaches in terms of test-set scores
and efficiency. To our knowledge, this is the first HMM model selection algorithm that
can make this claim. Consequently, there is great potential for applying STACS to do-
mains where continuous observation-density HMMs of fixed size are used, such as speech
recognition, handwriting recognition, financial modeling and bioinformatics.

In the context of this thesis, STACS provides a more efficient way of learning dis-
crete LVMs that also have significantly fewer local-minima issues than those learned us-
ing EM. The improved learning algorithm translates to better test-set likelihood and hence
increased predictive power in the resulting HMMs.

However, though the STACS approach to learning HMMs is strictly better than EM
and other existing model selection methods, it does have drawbacks due to its heuristic
components. The greedy binary splitting approach could lead to oversplitting in some
scenarios, or miss other, better partitionings of the state space. The BIC score is only an
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approximation to the true posterior, and hence is only an approximate scoring and stopping
criterion. Furthermore, regular BIC is not entirely suitable for temporal modéls A
scoring criterion based on variational Bay&s][might be a better option, though scoring

and stopping based on test-set likelihood, as mentioned earlier, would be best. In Chap-
ter 6 we see a different approach to learning HMMs using matrix decomposition methods.
Unlike STACS and EM-based approaches, this algorithm does not suffer from local min-
ima. It also simplifies model selection to a simple examination of singular values obtained
from SVD. Such matrix decomposition methods for learning LVMs are more commonly
used in learning continuous LVMs in the form sdibspace methodwhich we describe

and improve upon in the next chapter.
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Figure 4.3: A. Running time vs. number of final states on tles&T data set. B. Final
scaled log-likelihood (nats/datapoint) vs. number of states for learning fixed-size models
on the Robot data. C. Log-Likelihood vs. running time for learning)atate model on
the RoBoT data. D. BIC score vs. running time on theodap data when allowed to
stop splitting autonomously. Results are typical of those obtained on all data sets, shown
mostly on the Robot dataset because it allowed the laf@ést 40) Li-Biswas HMMs.
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Figure 4.6: A. Fragment of(-state univariate synthetic data sequence used for model
selection testing. The histogram shows ofilglistinct peaks, indicating that some of
the observation densities overlap completely. B. FIBEK instrumented glove used to
collect Australian Sign Language dafg {ised in our classification experiments.

Figure 4.7: (A) A mobile tactical device and (B) a fixed device on which our algorithms

were deployed
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Chapter 5

Learning Stable Linear Dynamical
Systems

In this chapter we shift our focus from discrete to continuous latent variable models. We
extend Subspace IdentificatfofBection 3.3.2), a popular alternative to the EM algorithm

for learning LDS parameters which originates in the controls literature. Etatsstically
efficient it promises to find an optimum point of the observed data likelihood for finite
amounts of training data. On the downside, however, Ekbimputationally inefficient
each run finds only &cal optimum of this likelihood function, and hence we need many
random re-initializations to search parameter space for the global optimum. Subspace
ID reformulates the search space by trading off a small amoustabistical efficiency

in return for a large increase computationakfficiency. Though Subspace ID does not
reach an optimum point for finite data samples, it promises to reacgidhal optimum

of the observed data likelihood in the limit of sufficient data. Subspace ID is simpler and
easier to implement than EM as well, consisting of a singular value decomposition (SVD)
of a matrix in contrast to the repeated forward-backward iterations of EM.

An additional difficulty in learning LDSs as opposed to HMMs is that standard learning
algorithms can result in models witimstabledynamics, which causes them to be ill-suited

though our extension applies to the EM algorithm too, as we describe later
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for several important tasks suchasiwulationandlong-term prediction This problem can

arise even when the underlying dynamical system emitting the data is stable, particularly
if insufficient training data is available. which is often the case for high-dimensional tem-
poral sequences. In this chapter we propose an extension to Subspace ID that enforces
the estimated parameters to be stable. Though stability is a non-convex constraint, we
will see how a constraint-generation-based optimization approach yields approximations
to the optimal solution that are more efficient and more accurate than previous state-of-
the-art stabilizing methods.

5.1 Introduction

We propose an optimization algorithm for learning the dynamics matrix of an LDS while
guaranteeing stability. We first obtain an estimate of the underlying state sequence using
subspace identification. We then formulate the least-squares minimization problem for the
dynamics matrix as quadratic program(QP) [59], initially without constraints. When we

solve this QP, the estimaté we obtain may be unstable. However, any unstable solution
allows us to derive a linear constraint which we then add to our original QP and re-solve.
This constraint is a conservative approximation to the true feasible region. The above
two steps are iterated until we reach a stable solution, which is then refined by a simple
interpolation to obtain the best possible stable estimate. The overall algorithm is illustrated
in Figure5.1(A).

Our method can be viewed a&snstraint generatiof60] for an underlying convex
program with a feasible set of all matrices with singular values at masinilar to work
in control systems such ag][ This convex set approximates the true, non-convex feasible
region. So, we terminateeforereaching feasibility in the convex program, by checking
for matrix stability after each new constraint. This makes our algorithm less conservative
than previous methods for enforcing stability since it chooses the best of a larger set of
stable dynamics matrices. The difference in the resulting stable systems is noticeable
when simulating data. The constraint generation approach also results in much greater
efficiency than previous methods in nearly all cases.
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One application of LDSs in computer vision is learntignamic texturefrom video
data [1]. An advantage of learning dynamic textures is the ability to play back a realistic-
looking generated sequence of desired duration. In practice, however, videos synthesized
from dynamic texture models can quickly become degenerate because of instability in the
underlying LDS, or because of the competitive inhibition problems discussed in Chapter
In contrast, sequences generated from dynamic textures learned by our method remain
“sane” even after arbitrarily long durations, although we leave the probleroropetitive
inhibition to Chapte. We also apply our algorithm to learning baseline dynamic models
of over-the-counter (OTC) drug sales for biosurveillance, and sunspot numbers from the
UCR archive pZ]. Comparison to the best alternative methodss[Z] on these problems
yields positive results.

5.2 Related Work

Linear system identification is a well-studied subjeef][ Within this area,subspace
identification method$27] have been very successful. These techniques first estimate
the model dimensionality and the underlying state sequence, and then derive parameter
estimates using least squares. Within subspace methods, techniques have been developed
to enforce stability by augmenting the extended observability matrix with zérdsof

adding a regularization term to the least squares objeciije [

All previous methods were outperformed by Lacy and BernstdinHenceforth re-
ferred to as LB-1. They formulate the problem as a semidefinite program (SDP) whose
objective minimizes the state sequence reconstruction error, and whose constraint bounds
the largest singular value iy This convex constraint is obtained from the nonlinear ma-
trix inequality I,, — AAT = 0, wherel,, is then x n identity matrix and- 0 (> 0) denotes
positive (semi-) definiteness. This can be seen as follows: the inequality bounds the top
singular value byl since it implies for all vectors € R":

x" (I, — AAT)z >0

= 2TAA s < 2"z
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Therefore this statement holds for= v, (AAT). Define = \;(AAT). Then,

VTAATY < vy
=<1

= 0i(A) <1

where the last step follows from the fact thatv = 1 ando?(M) = A\ (MMT) for

any square matri¥/. The existence of this constraint also proves the convexity of the
o1 < 1 region. This condition isufficientbut notnecessaryor stability, since a matrix
that violates this condition may still be stable.

A follow-up to this work by the same authors3], which we will call LB-2, attempts
to overcome the conservativeness of LB-1 by approximating the Lyapunov inequalities
P —APAT = 0, P = 0 with the inequalities® — APAT — 61, = 0, P — 61, = 0,9 > 0.
These inequalities hold iff the spectral radius is less thafowever, the approximation
is achieved only at the cost of inducing a nonlinear distortion of the objective function by
a problem-dependent reweighting matrix involviRgwhich is a variable to be optimized.
In our experiments, this causes LB-2 to perform worse than LB-1 (foryaunyterms of
the state sequence reconstruction error, even while obtaining solutions outside the feasi-
ble region of LB-1. Consequently, we focus on LB-1 in our conceptual and qualitative
comparisons as it is the strongest baseline available. However, LB-2 is more scalable than
LB-1, so quantitative results are presented for both.

To summarize the distinction between LB-1 and LB-2: it is hard to have both the right
objective function (reconstruction error) and the right feasible region (the set of stable
matrices). LB-1 optimizes the right objective but over the wrong feasible region (the set
of matrices witho; < 1). LB-2 has a feasible region close to the right one, but at the cost
of distorting its objective function to an extent that it fares worse than LB-1 in nearly all
cases.

2For a proof sketch, see3]] pg. 410.
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5.3 The Algorithm

The overall algorithm we propose is quite simple. We first formulate the dynamics ma-
trix learning problem as a QP with a feasible set that includes the set of stable dynamics
matrices. Then, if the unconstrained solution is unstable, we demonstrate how unstable
solutions can be used generate linear constrainthat are added to restrict the feasible

set of the QP appropriately. The QP is then re-solved and the constraint generation loop
is repeated until we reach a stable solution. As a final step, the solution is refined to be as
close as possible to the unconstrained-objective-minimizing estimate while remaining sta-
ble. The overall algorithm is illustrated in Figutel(A). Note that the linear constraints

can eliminate subsets of the set of stable matrices from the solution space, so the final
solution is not necessarily the optimal one. However, with respect to LB-1and LB-2, our
method optimizes the right objective (unlike LB-2) over a less conservative feasible region
which includes some stable matrices with> 1 (unlike LB-1). Optimizing over the right
feasible region (spectral radigs1) is hard, for reasons we will see in Sectiv:3.2

We now elaborate on the different steps of the algorithm, namely how to formulate the
objective (Sectiorb.3.1), generate constraints (Sectibr8.3, compute a stable solution
(Section5.3.4 and then refine it (Section 3.5.

5.3.1 Formulating the Objective

Assume the notation and formulations of Chagein subspace ID as well as in the M-
step of an iteration of EM, it is possible to write the objective functionfas a quadratic

function. For subspace ID we define a quadratic objective function:
2

A= arg min HAXZ — )?MH
A F

= arg mjn{tl‘ {(A)N(, — )N(Z-H)T (A)N(Z — )N(Z-H)] }
= arg mjn {tl’ (A)?i)?iTAT> — 2tr ()Z'J?LMX) + tr <)?;1)Zi+1> }

= arg min {aTPa —2q"a+ r} (5.1a)
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wherea € R"*!, g € R”*1, P € R"*" andr € R are defined as:

a=vedA) =[Ay Ay Az -+ A’ (5.1b)
P =1, (XX]) (5.1c)
g = ved X; X;,) (5.1d)
r=tr (X1, Xin) (5.1¢)

I, is then x n identity matrix and® denotes the Kronecker product. Note tlfats a
symmetric positive semi-definite matrix and the objective function in Equalidri(is a
guadratic function ofi. For EM, we can use a similar quadratic objective function:

A= arg min {aTPa -2 qTa} (5.2a)
wherea € R¥*1, g € R"*! and P € R”*"* are defined as:

a= Vqu) - [All A21 A31 e A'rm]T (52b)

T
P=1,® (Z Pt) (5.2¢)
q = vec (Z Pt_l,t> (5.2d)

Here, P, andP,_, , are taken directly from the E-step of EM.

5.3.2 Convexity

The feasible set of the quadratic objective function is the space of alln matrices,
regardless of their stability. When its solution yields an unstable matrix, the spectral radius
of 4 is greater than. Ideally we want to constrain the solution space to the set of stable
matrices, i.e. theset of matrices with spectral radius at most oweéhich we call S)).
However, it is not possible to formulate a convex optimization routine that optimizes over
this set because of the shapeXif Consider the class &f x 2 matrices {6]: E, 3 =

[0.3 a ;4 0.3]. The matriced;o, and E 1, are stable with\; = 0.3, but their convex
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Figure 5.1: (A): Conceptual depiction of the space &fn matrices. The region of stability
(S,) is non-convex while the smaller region of matrices with< 1 (S,) is convex. The
elliptical contours indicate level sets of the quadratic objective function of the,@B.

the unconstrained least-squares solution to this objectlyg.; is the solution found by
LB-1 [2]. One iteration of constraint generation yields the constraint indicated by the
line labeled ‘generated constraint’, and (in this case) leads to a stable saltitiohhe

final step of our algorithm improves on this solution by interpolatitigvith the previous
solution (in this caseZl) to obtainAj},,,,. (B): The actual stable and unstable regions for
the space of x 2 matricesE, s = [0.3 « ;5 0.3 ], with a, 5 € [-10, 10]. Constraint
generation is able to learn a nearly optimal model from a noisy state sequence ofllength
simulated fromE 10, with better state reconstruction error than either LB-1 or LB-2.

combinationyEypo + (1 — ) Eo 10 iS unstable for (e.g.)y = 0.5 (Figure5.1(B)). This
shows that the set of stable matrices is non-convex:fes 2, and in fact this is true
for all n > 1. The problem of optimizing over this set is hence a difficult non-convex
optimization routine. We turn instead to the largsstgular value which is a closely
related quantity since

Tmin(A) < IN(A)| < Omae(A) Vi=1,....n [37]

Therefore every unstable matrix has a singular value greater than one, but the converse is
not necessarily true. Moreover, the set of matrices wjtk< 1 is convex. To see this, note
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that for any square matrix/,

o1(M) = max TMuv
w,vi||uf2=1[Jv[2=1

Therefore, ifoy (M) < 1 andoy (M) < 1, then for all convex combinations,

o(YMy + (1 =7)My) = max — yu' Mo+ (1 —y)u’ My < 1.

wvif|ufl2=1,[[v]l2=1

Figure5.1(A) conceptually depicts the non-convex region of stabififyand the convex
regionsS, with o; < 1 in the space of alh x n matrices for some fixed. The difference
betweenS, and S, can be significant. Figurg.1(B) depicts these regions fdf, s with

a, f € [—10,10]. The stable matriceB,,, andEj ;, reside at the edges of the figure. Our
algorithm is designed to mitigate the difference betwsgmand S, by stopping before it
reachesS,. While one might worry that the difference is too severe to mitigate this way,
and results do vary based on the instance used, our experiments below will show that our
constraint generation algorithm described below is able to learn a nearly optimal model
from a noisy state sequencerof= 7 simulated from ;,, with better state reconstruction
error than LB-1 and LB-2.

5.3.3 Generating Constraints

We now describe how to generate convex constraints on th&,sefhe basic idea is to
use the unstable solutiof along with properties of matrices in the $&tto infer a linear
constraint betweed andsS,. Assume that

A=UxVT
by SVD, wherel/ = [i,]",, V = [5;], and® = diag{51, .. .,5,}. Then:

A=UsVT = S=UTAV= &,(A) =1 At = tr(a] A, (5.3)
1 1
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Therefore, instability ofd implies that:
G1>1= tr (ﬂffli?l) >1= tr (51ﬂIA\> >1= gla>1 (5.4)

Hereg = vedu;v]). Since equation54) arises from an unstable solution of equa-
tion (5.19, g is can be interpreted as a hyperplane separatingm the space of matrices
with o1 < 1. In fact, the hyperplane imngentto §,. We use the negation of equatidin4)

as a constraint:

gla<i (5.5)

5.3.4 Computing the Solution

Given the above mechanism for generating convex constraints on tg, setonstraint
generation-basedonvex optimization algorithm immediately suggests itself. The overall
quadratic program can be stated as:

minimize a"Pa—2q'a+r

. (5.6)
subjectto Ga < h

with a, P, ¢ andr as defined in Eqs5(19. {G, h} define the set of constraints, and are
initially empty. The QP is invoked repeatedly until the stable region,S,g.is reached.
At each iteration, we calculate a linear constraint of the form in Ed),(add the corre-
spondingg " as a row in7, and augment the vector with al at the end. Note that we will
almost always stopeforereaching the feasible regidy .

5.3.5 Refinement

Once a stable matrix is obtained, it is possible to refine this solution. We know that the
last constraint caused our solution to cross the boundaty, a0 we interpolate between

the last solution and the previous iteration’s solution using binary search to look for a
boundary of the stable region, in order to obtain a better objective value while remaining
stable. This results in a stable matrix with top eigenvalue equal tm principle, we
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could attempt to interpolate between any stable solution and any one of the unstable so-
lutions from previous iterations. However, the stable region can be highly complex, and
there may be several folds and boundaries of the stable region in the interpolated area. In
our experiments (not shown), interpolating from the Lacy-Bernstein solution to the last
unstable solution yielded worse results. We also tried other interpolation and constraint-
relaxation methods such as: interpolating from the least squares solution to the first stable
solution, dropping constraints added earlier in the constraint-generation process, and ex-
panding the constrained set by multiplying theector by a constant greater than one. All
these methods yielded worse results overall than the algorithm presented here.

5.4 Experiments

For learning the dynamics matrix, we implemented EM, subspace identification, constraint
generation (usinguadprog ), LB-1[2] and LB-2 [63] (usingCVXwith SeDuMi) in Mat-

lab on a3.2 GHz Pentium with2 GB RAM. Note that the algorithms that constrain the
solution to be stable give a different result from the basic EM and and subspace ID algo-
rithms only in situations when the unconstrainéds unstable. However, LDSs learned

in scarce-data scenarios are unstable for almost any domain, and some domains lead to
unstable models up to the limit of available data (e.g.dteam dynamic textures in
Section5.4.7). The goals of our experiments are to: (1) examine the state evolution and
simulated observations of models learned using constraint generation, and compare them
to previous work on learning stable dynamical systems; and (2) compare the algorithms
in terms of computational efficiency. We apply these algorithms to learning dynamic tex-
tures from the vision domain (Sectié.1), modeling over-the-counter (OTC) drug sales
counts (Sectiorb.4.3 and sunspot numbers (Section.4).

5.4.1 Stable Dynamic Textures

Dynamic textures in vision can intuitively be described as models for sequences of images
that exhibit some form of low-dimensional structure and recurrent (though not necessarily
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Figure 5.2: Dynamic textures. A. Samples from the origstaam sequence and the
fountain  sequence. B. State evolution of synthesized sequencesloderframes

(steam top, fountain  bottom). The least squares solutions display instability as time
progresses. The solutions obtained using LB-1 remain stable for theofllframe im-

age sequence. The constraint generation solutions, however, yield state sequences that
are stable over the full000 frame image sequence without significant damping. C. Sam-
ples drawn from a least squares synthesized sequences (top), and samples drawn from a
constraint generation synthesized sequence (bottom). The constraint generation synthe-
sizedsteam sequence is qualitatively better looking than #team sequence gener-

ated by LB-1, although there is little qualitative difference between the two synthesized
fountain  sequences.

repeating) characteristics, e.g. fixed-background videos of rising smoke or flowing water.
Treating each frame of a video as an observation vector of pixel vgluege learned
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CG LB-1 LB-I LB-2 | CG LB-1 LB-1 LB-2
steam (n = 10) fountain  (n = 10)
|A1] | 1.000 0.993  0.993 1.000 0.999 0.987  0.987 0.997
o1 1.036 1.000 1.000 1.0341.051 1.000 1.000 1.054
e:(%) | 45.2 103.3 103.3 546.9 0.1 4.1 4.1 3.0
time | 0.45 95.87 3.77 0.50| 0.15 15.43 1.09 0.49
steam (n = 20) fountain  (n = 20)
|A1] [ 0.999 — 0.990 0.999 0.999 — 0.988 0.996
o1 1.037 — 1.000 1.062 1.054 — 1.000 1.056
e.(%) | 58.4  — 154.7 294.8| 1.2 — 5.0 22.3
time | 237 — 1259.6  33.55| 1.63 — 159.85 5.13
steam (n = 30) fountain  (n = 30)
A1 | 1.000 — 0.988 1.000 1.000 — 0.993 0.998
o1 1.054 — 1.000 1.130 1.030 — 1.000 1.179
e:(%) | 63.0 — 341.3 631.5| 13.3 — 14.9 104.8
time | 8.72 — 239789 62.44|12.68 —  5038.94 48.55
steam (n = 40) fountain  (n = 40)
A | 1.000 — 0.989 1.000 1.000 — 0.991 1.000
o1 1.120 — 1.000 1.128 1.034 — 1.000 1.172
e.(%) | 20.24 — 282.7 768.5| 3.3 — 4.8 21.5
time | 5,85 — 79516.98 289.79 61.9 —  43457.77 239.53

Table 5.1: Quantitative results on the dynamic textures data for different numbers of states
n. CG is our algorithm, LB-1and LB-2 are competing algorithms, and EBsh simula-

tion of LB-1 using our algorithm by generating constraints until we reaglsince LB-1

failed forn > 10 due to memory limitse,, is percent difference in squared reconstruction
error. Constraint generation, in all cases, has lower error and faster runtime.
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Figure 5.3: Bar graphs illustrating decreases in objective function value relative to the
least squares solution (A,B) and the running times (C,D) for different stable LDS learning
algorithms on thdountain  (A,C) andsteam (B,D) textures respectively, based on the
corresponding columns of Tabiel

dynamic texture models of two video sequencessteam sequence, composed i x

170 pixel images, and th&ountain  sequence, composed 050 x 90 pixel images,
both of which originated from the MIT temporal texture database (FigLi@)). We use
parameters = 80, n = 15, andd = 10. Note that, while the observations are the raw
pixel values, the underlying state sequence we learn hagpniori interpretation.

An LDS model of a dynamic texture maynthesizan “infinitely” long sequence of
images by driving the model with zero mean Gaussian noise. Each of our two models uses
an 80 frame training sequence to generat®0 sequential images in this way. To better
visualize the difference between image sequences generated by least-squares, LB-1, and
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constraint generation, the evolution of each method’s state is plotted over the course of the
synthesized sequences (Figir&(B)). Sequences generated by the least squares models
appear to be unstable, and this was in fact the case; bottedbhen and thefountain

sequences resulted in unstable dynamics matrices. Conversely, the constrained subspace
identification algorithms all produced well-behaved sequences of states and stable dynam-
ics matrices (Tabl&.1), although constraint generation demonstrates the fastest runtime,
best scalability, and lowest error of any stability-enforcing approach.

A qualitative comparison of images generated by constraint generation and least squares
(Figure5.2(C)) indicates the effect of instability in synthesized sequences generated from
dynamic texture models. While the unstable least-squares model demonstrates a dramatic
and unrealistic increase in image contrast over time, the constraint generation model con-
tinues to generate qualitatively reasonable images. Qualitative comparisons between con-
straint generation and LB-1 indicate that constraint generation learns models that generate
more natural-looking video sequengésan LB-1.

Table5.1demonstrates that constraint generation always has the lowest error as well as
the fastest runtime. The running time of constraint generation depends on the number of
constraints needed to reach a stable solution. Note that LB-1 is more efficient and scalable
when simulated using constraint generation (by adding constraintsnid reached)
than itis in its original SDP formulation.

Figure 5.3 shows bar graphs comparing reconstruction errors and running times of
these algorithms, based on columns of Tahlk illustrating the large difference in effi-
ciency and accuracy between constraint generation and competing methods.

5.4.2 Prediction Accuracy on Robot Sensor Data

Another important measure of accuracy of dynamic models is their performance on short-
term and long-term prediction. This problem was addressed in the context of stable LDS
modeling in Byron Boots’ CMU Masters thesig]| which uses the techniques described

3See videos at http://www.select.cs.cmu.edu/projects/stableLDS
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Figure 5.4: Prediction accuracy on Robot Sensory Data (from Boots (26094. The

mobile robot with camera and laser sensors. B. The environment and robot path. C. An
image from the robot camera. D. A depiction of laser range scan data (green dots on
environment surfaces). E. Predictive log-likelihoods from: the unstable model (Unstable),
constraint generation (CG), and the two other LDS stabilizing algorithms, LB-1 and LB-2.
Bars at every 20 timesteps denote variance in the results. CG provides the best stable short
term predictions, nearly mirroring the unstable model, while all three stabilized models do
better than the unstable model in the long term.

in this chapter for models with exogenous control inputs, and also combines the constraint
generation algorithm with EM (Sectidh3.]) in the way indicated earlier in this chapter.

The experiment and result is summarized in this section since the original document is
difficult to access outside CMU. Vision data and laser range scans were collected from a
Point Grey Bumblebee?2 stereo camera and a SICK laser rangefinder mounted on a Botrics
O-bot d100 mobile robot platform (Figute4(A)) circling an obstacle in an indoor envi-
ronment(Figuré.4(B)). After collecting video and laser data (Figusel(C,D)), the pixel

and range reading data were vectorized at each timestep and concatenated. After centering
and scaling to align the variances, and SVD to reduce dimensionality, a sequence of 2000
10-dimensional processed observations was obtained.

For the experiment, 15 sequences of 200 frames were used to learn models of the
environment via EM initialized by subspace ID; of these models 10 were unstable. The
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unstable model was stabilized using constraint generation, LB-1 and LB-2. Stabilization
was performed in the last M-step of EM (doing it in every EM iteration is more expensive
and did not improve performance). To test predictive power, filtering was performed for 20
frames using the original model, and from there on, prediction was performed for different
extents ranging from 1 to 500, from the original unstable model and the three stabilized
models. This filtering and prediction was repeated on 1500 separate subsequences.

The resulting plot of prediction loglikelihood over different prediction extents (Fig-
ure 5.4(E)) shows that the model stabilized using constraint generation has the higher
prediction loglikelihood of the unstable model in the short term (1-120 timesteps), while
in the long term all the stable models have a higher prediction loglikelihood than the un-
stable model, whose score declines steadily while the stable models’ score remains higher
consistently.

5.4.3 Stable Baseline Models for Biosurveillance

We examine daily counts of OTC drug sales in pharmacies, obtained from the National
Data Retail Monitor (NDRM) collectiont{/]. The counts are divided intd3 different
categories and are tracked separately for each zipcode in the country. We focus on zipcodes
from a particular American city. The data exhibitslay periodicity due to differential
buying patterns during weekdays and weekends. We isolélteday subsequence where

the data dynamics remain relatively stationary, and attempt to learn LDS parameters to be
able to simulate sequences of baseline values for use in detecting anomalies. In principle,
more accurate baseline models should lead to better anomaly detection.

We perform two experiments on different aggregations of the OTC data, with parame-
ter valuesn = 7,d = 7 andr = 14. Figure5.5A) plots 22 different drug categories
aggregated over all zipcodes, and Fighr&B) plots a single drug category (cough/cold)
in 29 different zipcodes separately. In both cases, constraint generation is able to use very
little training data to learn a stable model that captures the periodicity in the data, while
the least squares model is unstable and its predictions diverge over time. LB-1 learns a
model that is stable but overconstrained, and the simulated observations quickly drift from
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the correct magnitudes.

A. Multi-drug sales counts B. Multi-zipcode sales counts ~ C.  Sunspot numbers
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Figure 5.5: (A):60 days of data foR2 drug categories aggregated over all zipcodes in the
city. (B): 60 days of data for a single drug category (cough/cold) foralkipcodes in

the city. (C): Sunspot numbers f@f0 years separately for each of th2 months. The
training data (top), simulated output from constraint generation, output from the unstable
least squares model, and output from the over-damped LB-1 model (bottom).

5.4.4 Modeling Sunspot Numbers

We compared least squares and constraint generation on learning LDS models for the
sunspot data discussed earlier in Sectiohi2 We use parameter settings= 7,d =

18,7 = 50. Figure5.5C) represents a data-poor training scenario where we train a least-
squares model o8 timesteps, yielding an unstable model whose simulated observations
increase in amplitude steadily over time. Again, constraint generation is able to use very
little training data to learn a stable model that seems to capture the periodicity in the data
as well as the magnitude, while the least squares model is unstable. The model learned by
LB-1 attenuates more noticeably, capturing the periodicity to a smaller extent. Quantitative
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results on both these domains exhibit similar trends as those in Fdble

5.5 Discussion

We have introduced a novel method for learning stable linear dynamical systems. Our
constraint generation algorithm is more powerful than previous methods in the sense of
optimizing over a larger set of stable matrices with a suitable objective function. In prac-
tice, the benefits of stability guarantees are readily noticeable, especially when the training
data is limited. This connection between stability and amount of training data is impor-
tant in practice, since time series data is often expensive to collect in large quantities,
especially for phenomena with long periods in domains like physics or astronomy. The
constraint generation approach also has the benefit of being faster than previous methods
in nearly all of our experiments. Stability could also be of advantage in planning ap-
plications. Subspace ID, and its stable variant introduced here, provide a different way of
looking at LVM parameter learning, one that is based on optimizingtééictivecapabil-

ities of the model. Depending on the number of observations stacked in the Hankel matrix,
we could optimize for short-term or long-term prediction if the data domain is expected or
known to have short or long-range periodicity. The simplicity of the matrix decomposition
approach, and its natural method for model selection by examining singular values, is also
very attractive in contrast to EM-based approaches. These factors motivate us to seek an
analogous learning method for HMM-type models as well, to realize these benefits in the
discrete LVM domain. In the next chapter we propose a variant of HMMs, along with a
matrix-decomposition-based learning algorithm for it that attains this goal.
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Chapter 6

Reduced-Rank Hidden Markov Models

So far we have examined continuous-observation Hidden Markov Models (HM¥s) [
and Linear Dynamical Systems (LDS<), which are two examples of latent variable
models of dynamical systems. The distributional assumptions of HMMs and LDSs result
in important differences in the evolution of their belief over time. The discrete state of
HMMs is good for modeling systems with mutually exclusive states that can have com-
pletely different observation signatures. The predictive distribution over observations is
allowed to be non-log-concave when predicting or simulating the future, leading to what
we callcompetitive inhibitiorbetween states (see Figui€ below for an example). Com-
petitive inhibition denotes the ability of a model’'s predictive distribution to place proba-
bility mass on observations while disallowing mixtures of those observations. Conversely,
the Gaussian predictive distribution over observations in LDSs is log-concave, and thus
does not exhibit competitive inhibition. However, LDSs naturally maosleboth state
evolution which HMMs are particularly bad at. The dichotomy between the two models
hinders our ability to compactly model systems that exhoith competitive inhibition

and smooth state evolution. In this chapter we presenRétriced-Rank Hidden Markov
Model (RR-HMM) a dynamical system model which can perform smooth state evolution
as well as competitive inhibition. Intuitively the RR-HMM assumes that the dynamical
system evolves smoothly along a low-dimensional subspace in a large discrete state space.
We discuss theoretical connections to previous work, propose a learning algorithm with
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finite-sample performance guarantees, and demonstrate results on high-dimensional real-
world sequential data.

6.1 Introduction

HMMs can approximate smooth state evolution by tiling the state space with a very large
number of low-observation-variance discrete states with a specific transition structure.
However, inference and learning in such a model is highly inefficient due to the large
number of parameters, and due to the fact that existing HMM learning algorithms, such
as Expectation Maximization (EM)], are prone to local minima. More sophisticated
EM-based algorithms for learning HMMs that avoid local minima, such as STACS (Chap-
ter4), help to some extent. However they are still heuristics that do not offer any theoretical
performance guarantees, and cannot learn very large-state-space models as efficiently or
accurately as we would like (on the other hand, STACS does lepasitive realization

of HMM parameters unlike the spectral method we describe here, but this does not hinder
us from performing inference and prediction using the RR-HMM parameters we obtain).
RR-HMMs allow us to reap many of the benefits of large-state-space HMMs without in-
curring the associated inefficiency during inference and learning. Indeed, we show that
all inference operations in the RR-HMM can be carried out in the low-dimensional space
where the dynamics evolve, decoupling their computational cost from the number of hid-
den states. This makesnk-kr RR-HMMs (with any number of states) as computationally
efficient ask-stateHMMs, but much more expressive. Figuel(A) shows an example

of observations from a-state dynamical system which cannot be representedstate

HMM Figure 6.1(B), but is accurately modeled by a raBlRR-HMM (Figure6.1(C)) that

can be learned using a single invocation of the algorithm described herstaie HMM

can be learned for this data (Figusel(D)). Traditional methods for learning this HMM,
such as EM, involves performing multiple restarts to escape local minima.

Though the RR-HMM is in itself novel, its low-dimensiori&f representation is a spe-
cial case of several existing models such as Predictive State Represent&ijp@bferv-
able Operator Models5p], generalized HMMs [(] and multiplicity automata {1, 77,

78



B.
Training Data from 4-state HMM Estimated 3-state HMM

ae cooco Q ? o ©° | a com0 Q ® (o)
! ! ' ] ] ] ' [} 1
T o : b
9 ll : : n :: n n ::: n ': 1
= | ' ' -". n noon i " n '
7B N T R T ¥ N N
gbige | i@ ne o e b e @i cmmeeno .
IR SR I T O
AT A R I A A T
cddd & owowd wodew 6/c bédaw cocmmmd b6 dmd |
time | | | time | |

D.
Estimated rank-3 RR-HMM Estimated 4-state HMM

ar o ® © om ¢ amm e @ o o
LI | \ ] : 1 K ! : || :: : I| Ill
o Lo P " P ! Co R
2 Vo " T AR - Lo N
= v T : Co T
Sbep ! | P i1 Qi |9 b @ o .10 10 @ |
S Coh o A A A A T N
o Vo ! |:'| .ll.n:',: .:,:: .:“ ! it . Lo '”””"I,'|
Cl & comom Wédod W bbb c 0o b O WO 666 O

time time

Figure 6.1: (A) Observations from a dynamical system with 4 discrete states and 3 discrete
observations, two of whose states emit the observation ‘c’ and can only be distinguished
by the underlying dynamics. (B) 3-state HMMs learned using EM with multiple restarts
cannot represent this model, as evinced by simulations from this model. (C) A rank-3
RR-HMM estimated using a single run of the learning algorithm described in this chapter
represents this 4-state model accurately (as seen from simulations), as does (D) a 4-state
HMM learned using EM, though the latter needs multiple restarts to discover the overlap-
ping states and avoid local minima.
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and is also related to the representation of LDSs learned using Subspace Identificdtion [
These and other related models and algorithms are discussed further in ettion

To learn RR-HMMs from data, we adapt and extend a recently proposed spectral learn-
ing algorithm by Hsu, Kakade and Zhang’] (henceforth referred to as HKZ) that learns
observable representatiorms HMMs using matrix decomposition and regression on em-
pirically estimated observation probability matrices of past and future observations. An
observable representation of an HMM allows us to model sequences with a series of oper-
ators without knowing the underlying stochastic transition and observation matrices. The
HKZ algorithm is free of local optima and asymptotically unbiased, with finite-sample
bounds onL, error in joint probability estimates and on KL-divergence of conditional
probability estimates from the resulting model. However, the original algorithm and its
bounds assume (1) that the transition model is full-rank and (2) that single observations
are informative about the entire latent state, 1-step observability We generalize the
HKZ bounds to the low-rank transition matrix case and derive tighter bounds that de-
pend onk instead ofm, allowing us to learn rank-RR-HMMs of arbitrarily largem in
O(NE?) time, whereN is the number of samples. We also describe and test a method
for circumventing thel-step observability condition by combining observations to make
them more informative. Furthermore, in the Appendix we also provide consistency results
which show that the learning algorithm in fact can learn PSRs (more details on this are
available in [/ 3], though our error bounds don’t yet generalize to these models.

Experiments show that our learning algorithm can recover the underlying RR-HMM in
a variety of synthetic domains. We also demonstrate that RR-HMMs are able to compactly
model smooth evolutioand competitive inhibition in a clock pendulum video, as well as
in real-world mobile robot vision data captured in an office building. Robot vision data
(and, in fact, most real-world multivariate time series data) exhibits smoothly evolving
dynamics requiring multimodal predictive beliefs, for which RR-HMMs are particularly
suited. We compare performance of RR-HMMs to LDSs and HMMs on simulation and
prediction tasks. Proofs and some other details are in the Appendix.
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Figure 6.2: (A) The graphical model representation of an RR-HNMienotes the:-
dimensional state vectads, them-dimensional discrete state, andthe discrete observa-

tion. The distributions oveli; andl, ; are deterministic functions &f. (B) An illustration

of different RR-HMM parameters and the spaces and random variables they act on. (C)
Projection of sets of predictive distributions of a rahRR-HMM with 10 states, and a
3-state full-rank HMM with similar parameters.

6.1.1 Definitions

Assume the HMM notation introduced in Chapfeassumd’ has ranki and letl’ = RS
where R € R™* andS € R*¥*™. This implies that the dynamics of the system can
be expressed iR* rather thanR™. By convention, we think o5 as projecting then-
dimensional state distribution vector tdcadimensional state vector, artlas expanding
this low-dimensional state back to anrdimensional state distribution vector while prop-
agating it forward in time. One possible choice #@rand S is to use any: independent
columns of7" as the columns oR, and let the columns of contain the coefficients re-
quired to reconstruct from R, though other choices are possible (e.g. using SVD). Also
assume for now that: < n (we relax this assumption in Secti@n2.4. We denote the
k-dimensional projection of the hidden state vecﬁpasft, which is simply a vector of
real numbers rather than a stochastic vector. We assume the initial state distribution lies in
the low dimensional space as well, i= R, for some vectof?, € R*. Figure6.2(A)
illustrates the graphical model corresponding to an RR-HMM. Figu#B) illustrates
some of the different RR-HMM parameters and the spaces they act on.

To see how the probability of a sequence can be computed using these parameters, first
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recall the definition ofA, € R™*™ according to equatior?(1) and the fact thal’ = RS:
A, = RS diag(0,..)

and defingV, € RF**
W, =S diag(O,.)R
Also letWW = " W, = SR. Equation .2) shows how to write the joint probability of

asequencey, ..., z; using{ 4, }. With the above definitions, the joint probability can also
be written using{1V,.} as well:

Prlzy, ..., 2] = 1} RS diag(O,,.)RS diag(O,,_,.)R---S diag(O,,.)7@ (from equation?.2))
=11 R(S diag(O,,.)R) (S diag(O,, ,)R)---(S diag(O,, )R) S7
= 1T RW,, ... W, @ (by definition of W, 7,) (6.1)

The latter parametrization casts a ranlRR-HMM as ak-dimensional PSR or trans-
formed PSR [4]. Inference can be carried out id(Nk?) time in this representation.
However, since every HMM is trivially a PSR, this leads to the question of how expressive
rank+ RR-HMMs are in comparison tb-state full-rank HMMs. The following example

is instructive.

6.1.2 Expressivity of RR-HMMs

We describe a rank-RR-HMM whose set of possible predictive distributions is easy to
visualize and describe. Consider the following rahRR-HMM with 10 states andt
observations. The observation probabilities in each state are of the form

Oi. = [pigi pi(1—q) (1—p)a (1—p)(1—q)

for some0 < p;,q; < 1, which can be interpreted dsdiscrete observations, factored as
two binary components which are independent given the standp;, ¢; are chosen to
place the vertices of the set of possible predictive distributions on evenly spaced points
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along a circle inp, ¢)-space:

Ti; = (1/2m) 2 + sin (27i /m) sin (27j /m) + cos (27i/m) cos (275 /m)]
pi = [sin(27i/m) + 1] /2
¢; = [cos(2mi/m) + 1] /2

We plot the marginal probability of each component of the observation, ranging across all
achievable values of the latent state vector forithe- 10 case (Figureés.2(C)), yielding

a 10-sided polygon as the projection of the set of possible predictive distributions. These
distributions are the columns @"O. We also plot the corresponding marginals for the

m = 3 full-rank HMM case to yield a triangular set. More generally, fromstate HMM,

we can get at most/sided polygon for the set of possible predictive distributions.

The above example illustrates that ranliRR-HMMs with m states can model sets
of predictive distributions which full-rank HMMs with less tham states cannot express.
However, as we shall see, inference in ranRR-HMMs of arbitrarym is as efficient as
inference ink-state full-rank HMMs. This implies that the additional degrees of freedom
in the RR-HMM'’s low-dimensional parameters and state vectors buy it considerable ex-
pressive power. Since RR-HMMs are also related to PSRs as pointed out in the previous
section, and since our learning algorithm will be shown tacbesistentfor estimating
PSRs (though we have finite-sample guarantees only for the RR-HMM case), it is also
instructive to examine the expressivity of PSRs in general. We refer the reader to Jaeger
(2000) B9 and James et. al. (2004)4] for more on this.

6.2 Learning Reduced-Rank HMMs

In a full-rank HMM, the maximum likelihood solution for the parameté?s O} can be

found through iterative techniques such as expectation maximization (E}MHM, how-

ever, is prone to local optima and does not address the model selection problem. STACS
is better but still not guaranteed to return anything close to optimal as data increases, and
is slow beyond a certain state space magnitude. Moreover, in learning RR-HMMs we face
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the additional challenge of learning the factors of its low-rank transition matrix. We could
use EM to estimatd” followed by (or combined with) matrix factorization algorithms
such as Singular Value Decomposition (SVEY] or Non-negative Matrix Factorization
(NMF) [7€]. This approach has several drawbacks. For example, if the noisy estimate of
a low-rank transition matrix is not low-rank itself, SVD could cause negative numbers to
appear in the reconstructed transition matrix. Also, algorithms for NMF are only locally
optimal, and NMF is overly restrictive in that it constrains its factor matrices to be non-
negative, which is unnecessary for our application since low-rank transition matrices may
have negative numbers in their factdtsand.S.

An alternative approach, which we adopt, is to learn an asymptotically unbiased ob-
servable representation of an RR-HMM directly using SVD of a probability matrix relating
past and future observations. This idea has roots in subspace identificaijci¥][and
multiplicity automata [ 1, 72, 70] as well as the PSR/OOM literatureq, 77/] and was re-
cently formulated in a paper by Hsu, Kakade and Zhandfpr full-rank HMMs. We use
their algorithm, extending its theoretical guarantees for the low-rank HMM case where the
rank of the transition matrix T i& < m. Computationally, the only difference in our base
algorithm (before Sectiof.2.9) is that we learn a rank representation instead of rank
m. This allows us learn much more compact representations of possibly large-state-space
real-world HMMs, and greatly increases the applicability of the original algorithm. Even
when the underlying HMM is not low-rank, we can examine the singular values to tune the
complexity of the underlying RR-HMM, thus providing a natural method for model selec-
tion. We present the main definitions, the algorithm and its performance bounds below.
Detailed versions of the supporting proofs and lemmas can be found in the Appendix.
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6.2.1 The Algorithm

The learning algorithm depends on the following vector and matrix quantities that com-
prise properties of single observations, pairs of observations and triples:

P, € R"is avector,P,; € R andP;,, € R™" are matrices. These quantities are
closely related to matrices computed in algorithms for learning OGNMsPSRs | 7] and
LDSs using subspace identification (Subspace iD).[ They can be expressed in terms
of HMM parameters (for proofs see the Appendix: Lemr@asd9 in SectionA.1.1):

Pl =17 T diag(m)O"
Py, = OT diag(m)O"
Ps .1 = OA,T diag(m)OT
Note thatP,; and P;,; both contain a factor of" and hence are both of rarikfor a
rank+ RR-HMM. This property will be important for recovering an estimate of the RR-
HMM parameters from these matrices. The primary intuition is that, when projected onto

an appropriate linear subspadg,, ; is linearly related ta? ; through a product of RR-
HMM parameters. This allows us to devise an algorithm that

1. estimates?; andPs , ; from data,
2. projects them to an appropriate linear subspace computed using SVD,

3. uses linear regression to estimate the RR-HMM parameters (up to a similarity trans-
form) from these projections.

Specifically, the algorithm attempts to learn @bpservable representaticof the RR-
HMM using a matrixU € R™* such that/TOR is invertible. An observable representa-
tion is defined as follows.
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Definition 1 The observable representatidefined to be the parametéxs b, { B. }7_,
such that:

b =U"P (6.2a)
b = (P} U) P, (6.2b)
B, =(U"P3,1)(U Py)t forz=1,...,n (6.2¢)

For the RR-HMM, note that the dimensionality of the parameters is determingdrimt

m: by € R¥, by € R¥ andVz B, € R¥*. Though these definitions seem arbitrary
at first sight, the observable representation of the RR-HMM is closely related to the true
parameters of the RR-HMM in the following manner (see Lenthirathe Appendix for

the proof):

1. by = (UTOR)m, = (UTO),

2. bL = 1T R(UTOR)™,

o0

3. Forallz=1,...,n: B, = (UTOR)W,(UTOR)™!

HenceB, is a similarity transform of the RR-HMM parameter matiik. = S diag(O..)R
(which, as we saw earlier, allows us to perform RR-HMM inference),E-;llmhdl;Oo are

the corresponding linear transformations of the RR-HMM initial state distribution and the
RR-HMM normalization vector. Note th&t/TOR) must be invertible for these relation-
ships to hold. Together, the parametélr:l;OO and B, for all x comprise the observable
representation of the RR-HMM. Our learning algorithm will estimate these parameters
from data. The algorithm for estimating rakkRR-HMMs is equivalent to the spectral
HMM learning algorithm of HKZ [L7] for learningk-state HMMs. Our relaxation of their
conditions (e.g. HKZ assume a full-rank transition matrix, without which their bounds are
vacuous), and our performance guarantees for learningkd&R-HMMs, show that the
algorithm learns a much larger class /eflimensional models than the class/ebtate
HMMs.
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LEARN-RR-HMM( k£, N) The learning algorithm takes as input the desired rak

the underlying RR-HMM rather than the number of statesAlternatively, given a sin-
gular value threshold the algorithm can choose the rank of the HMM by examining the
singular values of*, ; in Step 2. It assumes that we are giv&nndependently sampled
observation tripleszy, z5, x3) from the HMM. In practice, we can use a single long se-
guence of observations as long as we discount the bound on the number of samples based
on the mixing rate of the HMM (i.e.1(— the second eigenvalue @), in which case

7 must correspond to the stationary distribution of the HMM to allow estimatiof; of

The algorithm results in aastimated observable representatiohthe RR-HMM, with
parameters?l,goo, andl?x forz = 1,...,n. The steps are briefly summarized here for
reference:

1. Compute empirical estimatd%, }3271, ]33@,1 of ]31, Py, Ps.q (forxz=1,...n).

2. Use SVD on13271 to computeﬁ, the matrix of left singular vectors corresponding to
thek largest singular values.

3. Compute model parameter estimates:
(a) 31 =U"P,
(b) b = (P, U)* P,

(€) B, = U Ps,(UTPy1)* (forz=1,...,n)

We now examine how we can perform inference in the RR-HMM using the observable
representation. For this, we will need to define ititernal stateb,. Just as the parameter

51 is a linear transform of the initial RR-HMM belief staﬂé,is a linear transform of the
belief state of the RR-HMM at time(Lemmal0in SectionA.1.1 of the Appendix):

by = (UTOR)l(214-1) = (UTO)hy(214-1)

This internal staté, can be updated to condition on observations and evolve over time,
just as we can updaféfor RR-HMMs andk; for regular HMMs.
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6.2.2 Inference in the Observable Representation

Given a set of observable parameters, we can predict the probability of a sequence, update
the internal staté, to perform filtering and predict conditional probabilities as follows (see
LemmalOin the Appendix for proof):

e Predict sequence probabilitﬁ[wl, 2] ZZIOEM §x131
e Internal state updaté- _ Bub
b1 /b\T Ezt/l;t
e Conditional probability of:; givenz,,_: Prlz, | z1._1] = D
p y Oofr: g Lit—1- el ] = S5

Estimated parameters can, in theory, lead to negative probability estimates. These are
most harmful when they cause the normalizefs3,,b; or 3°. b%. B,b, to be negative.
However, in our experiments, the latter was never negative and the former was very rarely
negative; and, using real-valued observations with KDE (as in Se6tibf) makes neg-
ative normalizers even less likely, since in this case the normalizer is a weighted sum of
several estimated probabilities. In practice we recommend thresholding the normalizers
with a small positive number, and not trusting probability estimates for a few steps if the
normalizers fall below the threshold.

Note that the inference operations occur entirelRfn We mentioned earlier that pa-
rameterizing RR-HMM parameters #s, for all observations: casts it as a PSR af di-
mensions. In fact the learning and inference algorithms for RR-HMMs proposed here have
no dependence on the number of states/hatsoever, though other learning algorithms
for RR-HMMs can depend om: (e.qg. if they learnk and S directly). The RR-HMM
formulation is intuitively appealing due to the idea of a large discrete state space with
low-rank transitions, but this approach is also a provablysistent learning algorithm for
PSRsin general, with finite-sample performance guarantees for the case where the PSR
is an RR-HMM. Since PSRs are provably more expressive and compact than finite-state
HMMs [69, 75], this indicates that we can learn a more powerful class of models than
HMMs using this algorithm.
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6.2.3 Theoretical Guarantees

The following finite sample bound on the estimated model generalizes analogous results
from HKZ to the case of low-ran’. Theorem2 bounds thel.; error in joint probabil-

ity estimates from the learned model. This bound shows the consistency of the algorithm
in learning a correct observable representation of the underlying RR-HMM, without ever
needing to recover the high-dimensional paramei&rS, O of the latent representation.
Note that our error bounds amedependendf m, the number of hidden states; instead,
they depend o, the rank of the transition matrix, which can be much smaller than
Since HKZ explicitly assumes a full-rank HMM transition matrix, and their bounds be-
come vacuous otherwise, generalizing their framework involves relaxing this condition,
generalizing the theoretical guarantees of HKZ and deriving proofs for these guarantees.

Defineoy (M) to denote thé:'™ largest singular value of matrix/. The sample com-
plexity bounds depend polynomially dy o, (FP1) and1/o.(OR). The largero,(Pz 1)
is, the more well-separated are the dynamics from noise. The laf¢g@R) is, the more
informative the observation is regarding state. For both these quantities, the larger the
magnitude, the fewer samples we need to learn a good model. The bounds also depend
on a termnyg(e), which is the minimum number of observations that account for ¢)
of the total probability mass, i.e. the number of “important” observations. Recall\hat
is the number of independently sampled observation triples which comprise the training
data, though as mentioned earlier we can also learn from a single long training sequence.

The theorem holds under mild conditions. Some of these are the same as (or relaxations
of) conditions in HKZ, namely that the priaf is nonzero everywhere, and a number of
matrices of interestR, S, 0, (UTOR)) are of rank at least for invertibility reasons. The
other conditions are unique to the low-rank setting, namely$hatag(7)OT has rank at
leastk, R has at least one column whosgnorm is at mosVlc/—m, and theL; norm of R
is at mostl. The first of these conditions implies that the column spacg and the row
space oD have some degree of overlap. The other two are satisfied, in the case of HMMs,
by thinking of R as containing: linearly independent probability distributions along its
columns (including a near-uniform column) and%és containing the coefficients needed

89



to obtain7 from those columns. Alternatively, the conditions can be satisfied for an arbi-
trary R by scaling down entries aR and scaling up entries ¢f accordingly. However,

this increases /o (OR), and hence we pay a price by increasing the number of samples
needed to attain a particular error bound. See the Appendix (Sektiof) for formal
statements of these conditions.

Theorem 2 [Generalization of HKZ Theorem 6] There exists a constant 0 such that
the following holds. Pick an§ < ¢, < 1 andt¢ > 1. Assume the HMM obeys Conditions
3,4,5,6 and 7. Let = 0, (OR) oy (Pa1)e/(4tVk). Assume

t2 k k - no(e)
NzC-5- (ak(OR)Qak(PQJ)‘l + ak(OR)zak(Pm)?) +log(1/m)

With probability> 1 — n, the model returned byEARNRR-HMM(k, V) satisfies

> IPrfey,. @] —Prfar,... ]| < e
where the summation is over all possible hidden state sequences ofdength

For the proof, see the Appendix (Sectiari.4).

6.2.4 Learning with Observation Sequences as Features

The probability matrixP ; relates one past timestep to one future timestep, under the as-
sumption that the vector of observation probabilities at a single step is sufficient to disam-
biguate stater{ > m andrank(O) = m). In system identification theory, this corresponds

to assumingl-step observabilitf27]. This assumption is unduly restrictive for many
real-world dynamical systems of interest. More complex sufficient statistics of past and
future may need to be modeled, such adtloek Hankel matrixormulations for subspace
methods ? ] to identify linear systems that are nbistep observable.

(i}

For RR-HMMs, this corresponds to the case where m and/orrank(O) < m. Sim-
ilar to the Hankel matrix formulation, we can stack multiple observation vectors such that
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each augmented observation comprises data from several, possibly consecutive, timesteps.
The observations in the augmented observation vectors are assumed to be non-overlapping,
i.e. all observations in the new observation vector at timel have larger time indices

than observations in the new observation vector at timehis corresponds to assuming

past sequencemndfuture sequencespanning multiple timesteps as events that character-

ize the dynamical system, causiﬁ’g,PM andP; ., ; to be larger. Note that thein Ps ,, ;

still denotes aingleobservation, whereas the other indicesin P, andP;,, are now
associated with events. For example, if we staabonsecutive observations}; . 17, j]

equals the probability of seeing tkié n-length sequence, followed by the single observa-

tion z, followed by the;*" n-length sequence. Empirically estimating this matrix consists

of scanning for the appropriate subsequencasdj separated by observation symhol

and normalizing to obtain the occurrence probability.

P,; and P; , ; become larger matrices if we use a larger set of events in the past and
future. However, stacking observations does not complicatéythamics it can be shown
that the rank of>, ; andP; , ; cannot exceefl (see Sectioi.2 in the Appendix for a proof
sketch). Since our learning algorithm relies on an SVIPof, this means that augmenting
the observations does not increase the rank of the HMM we are trying to recover. Also,
since P; , ; is still an observation probability matrix with respect tsiagle unstacked
observation: in the middle, the number of observable operators we need remains constant.
Our complexity bounds successfully generalize to this case, since they only ré?y, on
P, and P; ., being matrices of probabilities summing to(for the former two) or to
Prlzy = z] (for the latter), as they are here.

The extension given above for learning HMMs with ambiguous observations differs
from the approach suggested by HKZ, which simply substitutes observationeweith
lappingtuples of observations (e.9%1(j, ) = Prlxs = jo, 79 = j1, 79 = iy, 71 = i1)).

There are two potential problems with the HKZ approach. First, the number of observable
operators increases exponentially with the length of each tuple: there is one observable
operator per tuple, instead of one per observation. SedBndcannot be decomposed

into a product of matrices that includés and consequently no longer has rank equal to
the rank of the HMM being modeled. Thus, the learning algorithm could require much
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more data to recover a correct model if we use the HKZ approach.

6.2.5 Learning with Indicative and Characteristic Features

To generalize even further beyond sequences of observations, we can think about deriv-
ing higher-level features of past and future observations, which werzhdative fea-

tures and characteristic featuresespectively, and generalizinél, P, P5 ., to contain
expected valuesf these features (or possibly products of features). These are analogous
to but more general than tledicative eventandcharacteristic eventsf OOMs [59] and
suffix-historiesandtestsof PSRs [ 7]. These more specific formulations can be obtained

by assuming our indicative and characteristic features tmdieator variablesof some
indicative and characteristic events, causing the expected values of singleton, pairs and
triples of these features (or their products) to equal probabilities of occurrence of these
events. This leads to the current scenario where the matﬁlqe&l and P; . ; contain
probabilities, and in fact our theoretical guarantees hold in this case. In the more general
case where we choose arbitrary indicative and characteristic features of past and future
observations which do not lead to a probabilistic interpretatioﬁloPm andPs , 1, our

error bounds do not hold as written, although there is good reason to believe that they
can be generalized. However the algorithm is still valid in the sense that we can prove
consistencyf the resulting estimates. See Sectiord of AppendixA.

6.2.6 Kernel Density Estimation for Continuous Observations

The default RR-HMM formulation assumes discrete observations. However, since the
model formulation converts the discrete observations#mdimensional probability vec-

tors, and the filtering, smoothing and learning algorithms we discuss all do the same, it is
straightforward to model multivariate continuous data. Counting on our ability to perform
efficient inference and learning even in very large state spaces, we: pokts in ob-
servation space as kernels, and perform Kernel Density Estimation (KDE) to convert each
continuous datapoint into a probability vector. In our experiments we use Gaussian kernels
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with uniform bandwidths, however any smooth kernel will suffice. The kernel centers can
be chosen by sampling, clustering or other standard methods. In our experiments below,
we use an initial subsequence of training data points as kernel centers directly. The kernel
bandwidths can be estimated from data using maximum likelihood estimation, or can be
fixed beforehand. In the limit of infinite training data, the bandwidth can shrink to zero
and the KDE gives an accurate estimate of the observation density. Our theoretical results
carry over to the KDE case with modifications described in Sectidn5. Essentially,

the bounds still hold for the case where we are observing stochastic vectors, though we
do not yet have additional bounds connecting this existing bound to the error in estimat-
ing probabilities of raw continuous observations. When filtering in this formulation, we
compute a vector of kernel center probabilities for each observation. We normalize this
vector and use it to generate a convex combination of observable operators, which is used
for incorporating the observation rather than any single observable operator.

This affects the learning algorithm and inference procedure as follows. Assume for
ease of notation that the training data consistd/adets of three consecutive continuous
observation vectors each, i.6.(7 1, %12, %13), (To1, T22, Ta3), .-, (TN1,TN2, TN3) ),
though in practice we could be learning from a single long training sequence (or sev-
eral). Also assume for now that each observation vector contains a single raw observation,
though this technique can easily be combined with the more sophisticated sequence-based
learning and feature-based learning methods described above. We will assteneel
centers chosen from the training data, where'thkernel is centered &, and each kernel
has a covariance matrix @f. A is a bandwidth parameter that goes to zero over time. Let
N (u, C) denote a multivariate Gaussian distribution with m@asind covariance matrix
C, andPr[y | N (1, C)] be the probability of; under this Gaussian.

The learning algorithm begins by computingdimensional feature vector{é})le,
<¢j>§'vz1 and <£]>§V:1 where

[6;]i = Pr[Zj. | N(E, 2)]
[0y]i = Pl | N(E, )]

—

(&5l = Pr(Z;5 | N (@, 5)]
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In addition, then-dimensional vector$5j)§\[:1 represent the kernel probabilities of the
second observation which shrink to zero in the limit of infinite data at an appropriate rate
via the bandwidth parametear

Gili = Pr[#2 | N(G, AD)]

These vectors are then normalized to sum to 1 individually. Then, the vég:tand
matricesP, ; andPs ;1 (for a givenz), can be estimated as follows:

N
. 1 .
Forx =cq,...,c,: P3,z,1—NZK] €¢

j=1
Once these matrices have been estimated, the rest of the algorithm is unchanged. We
computen ‘base’ observable operatofs.,, ..., B., from the ]337,;71 matrices estimated
above, and vectors andb.., as before. Given these parameter estimates, filtering for a
T-length observation sequen¢d, . . ., z.) now proceeds in the following way:

Fort=1,...,7

Computer; such tha{s,]; = Pr[7, | N (¢, A\X)], and normalize.

n

B,, =Y [¢}];B.,

=1

b - Batgt
o gooBatgt

6.3 Experimental Results

We designed several experiments to evaluate the properties of RR-HMMs and the learning
algorithm both on synthetic and on real-world data. The first set of experiments (Section
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Figure 6.3: Learning discrete RR-HMMs. The three figures depict the actual eigenvalues
of three different RR-HMM transition matrices, and the eigenvalues (95% error bars) of
the sum of RR-HMM observable operators estimated wittD00 and 100, 000 training
observations. (A) A 3-state, 3-observation, rank 2 RR-HMM. (B) A full-rank, 3-state,
2-observation HMM. (C) A 4-state, 2-observation, rank 3 RR-HMM.

6.3.]) tests the ability of the spectral learning algorithm to recover the correct RR-HMM.
The second experiment (Secti6érB.2 evaluates the representational capacity of the RR-
HMM by learning a model of a video that requires both competitive inhibition and smooth
state evolution. The third set of experiments (Sectich3 tests the model’'s ability to
learn, filter, predict, and simulate video captured from a robot moving in an indoor office
environment.

6.3.1 Learning Synthetic RR-HMMs

First we evaluate the unbiasedness of the spectral learning algorithm for RR-HMMs on
3 synthetic examples. In each case, we build an RR-HMM, sample observations from
the model, and estimate the model with the spectral learning algorithm described in Sec-
tion 6.2. We compare the eigenvaluesi®f= ) B, in the learned model to the eigenval-

ues of the transition matriX' of the true modelB is a similarity transform of - R which
therefore has the same non-zero eigenvalués-ask.S, so we expect the estimated eigen-
values to converge to the true eigenvalues with enough data. This is a necessary condition
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for unbiasedness but not a sufficient one. See Seétidnn Appendix for parameters of
HMMs used in the examples below.

Example 1: An RR-HMM  We examine an HMM withn = 3 hidden statesp = 3
observations, a full-rank observation matrix and a= 2 rank transition matrix. Fig-

ure 6.3(A) plots the true and estimated eigenvalues for increasing size of dataset, along
with error bars, suggesting that we recover the true dynamic model.

Example 2: A 2-step-Observable HMM We examine an HMM withn = 3 hidden
states;n = 2 observations, and a full-rank transition matrix (see Appendix for parame-
ters). This HMM violates then < n condition. The parameters of this HMM cannot be
estimated with the original learning algorithm, since a single observation does not pro-
vide enough information to disambiguate state. By stacRimgnsecutive observations
(see Sectior®.2.4), however, the spectral learning algorithm can be applied successfully
(Figure6.3(B)).

Example 3: A 2-step-Observable RR-HMM We examine an HMM withn = 4 hid-

den statesy = 2 observations, and /a = 3 rank transition matrix (see Appendix for pa-
rameters). In this example, the HMM is low raakd multiple observations are required

to disambiguate state. Again, stacking two consecutive observations in conjunction with
the spectral learning algorithm is enough to recover good RR-HMM parameter estimates
(Figure6.3(C)).

6.3.2 Competitive Inhibition and Smooth State Evolution in Video

We model a clock pendulum video consisting of 55 frames (with a peried 2if frames)

as a 10-state HMM, a 10-dimensional LDS, and a rEnRR-HMM with 4 stacked obser-
vations. Note that we could easily learn models with more than 10 latent states/dimensions;
we limited the dimensionality in order to demonstrate the relative expressive power of the
different models. For the HMM, we convert the continuous data to discrete observations
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B. Stable LDS

Figure 6.4: The clock video texture simulated by a HMM, a stable LDS, and a RR-HMM.
(A) The clock modeled by a0-state HMM. The manifold consists of the t8gprincipal
components of predicted observations during simulation. The generated frames are coher-
ent but motion in the video is jerky. (B) The clock modeled byalimensional LDS. The
manifold indicates the trajectory of the model in state space during simulation. Motion in
the video is smooth but frames degenerate to superpositions. (C) The clock modeled by a
rank10 RR-HMM. The manifold consists of the trajectory of the model in the low dimen-
sional subspace of the state space during simulation. Both the motion and the frames are
correct.

by 1-NN on 25 kernel centers sampled sequentially from the training data. We trained the
resulting discrete HMM using EM. We learned the LDS directly from the video using sub-
space ID with stability constraints §] using a Hankel matrix of0 stacked observations.

We trained the RR-HMM by stacking 4 observations, choosing an approximate rank of
10 dimensions, and learning 25 observable operators corresponding to 25 Gaussian kernel
centers. We simulate a series of 500 observations from the model and compare the man-
ifolds underlying the simulated observations and frames from the simulated videos (Fig-
ure 6.4). The small number of states in the HMM is not sufficient to capture the smooth
evolution of the clock: the simulated video is characterized by realistic looking frames,
but exhibits jerky irregular motion. For the LDS, although tltedimensional subspace
captures smooth evolution of the simulated video, the system quickly degenerates and in-
dividual frames of video are modeled poorly (resulting in superpositions of pendulums
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Figure 6.5: (A) The mobile robotic platform used in experiments. (B) Sample images
from the robot’s camera. The lower figure depicts the hallway environment with a central
obstacle (black) and the path that the robot took through the environment while collecting
data (the red counter-clockwise ellipse) (C) Squared loss prediction error for different
models after filtering over initial part of data. The RR-HMM performs more accurate
predictions consistently for 30 timesteps.

in generated frames). For the RR-HMM, the simulated video benefits from both smooth
state evolutiorand competitive inhibition. The manifold in th&d-dimensional subspace

is smooth and structured and the video is realistic. The results demonstrate that the RR-
HMM has the benefits of smooth state evolution and compact state space of a LDS and the
benefit of competitive inhibition of a HMM.

6.3.3 Filtering, Prediction, and Simulation with Robot Vision Data

We compare HMMs, LDSs, and RR-HMMs on the problem of modeling video data from a
mobile robot in an indoor environment. A video2sf00 frames was collected &tHz from

a Point Grey Bumblebee?2 stereo camera mounted on a Botrics Obot d100 mobile robot
platform (Figure6.5(A)) circling a stationary obstacle (Figu@5B)) and 1500 frames

were used as training data for each model. Each frame from the training data was reduced
to 100 dimensions via SVD on single observations. Using this training data, we trained
an RR-HMM (¢ = 50,n = 1500) using spectral learning with 20 stacked continuous
observations and KDE (Sectidh2.§ with 1500 centers, a 50-dimensional LDS using
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Subspace ID with Hankel matricesif timesteps, and a 50-state HMM with00 discrete
observations using EM run until convergence. For each model, we performed filtering for
different extentg; = 100, 101, ..., 250, then predicted an image which was a further
points in the future, fot, = 1,2...,100. The squared error of this prediction in pixel
space was recorded, and averaged over all the different filtering exteatsbtain means
which are plotted in Figuré.5C). As baselines, we plot the error obtained by using the
mean of filtered data as a predictor (titled ‘Mean’), and the error obtained by using the last
filtered observation as a predictor (titled ‘Last’).

Both baselines perform worse than any of the more complex algorithms (though as
expected, the ‘Last’ predictor is a good one-step predictor), indicating that this is a non-
trivial prediction problem. The LDS does well initially (due to smoothness), and the HMM
does well in the longer run (due to competitive inhibition), while the RR-HMM performs
as well or better at both time scales since it models both the smooth state evolution and
competitive inhibition in its predictive distribution. In particular, the RR-HMM yields sig-
nificantly lower prediction error consistently for the first 30 timesteps (i.e. five seconds) of
the prediction horizon.

6.4 Related Work

6.4.1 Predictive State Representations

Predictive State Representations (PSRS8) | /] and Observable Operator Models (OOMSY]
model sequence probabilities as a produablzservable operatomatrices. This idea, as

well as the idea of learning such models using linear algebra techniques, originates in the
literature on multiplicity automata and weighted automata, [/2, 70]. Despite recent
improvements {9, 80], practical learning algorithms for PSRs and OOMs have been lack-
ing. RR-HMMs and its spectral learning algorithm are also closely related to methods in
subspace identificatiof?7, 29 in control systems for learning LDS parameters, which
use SVD to determine the relationship between hidden states and observations.
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As pointed out earlier, the spectral learning algorithm presented here learns PSRs. We
briefly discuss other algorithms for learning PSRs from data. Several learning algorithms
for PSRs have been proposéd,[ 75, 87]. Itis easier for PSR learning algorithms to return
consistenparameter estimates because the parameters are based on observable quantities.
[74] develops an SVD-based method for finding a low-dimensional variant of PSRs, called
Transformed PSREIPSRSs). Instead of tracking the probabilities of a small number of
tests, TPSRs track a small number of linear combinations of a larger number of tests. This
allows more compact representations, as well as dimensionality selection based on exam-
ining the singular values of the decomposed matrix, as in subspace identification methods.
Note that nonlinearity can be encoded into the design of core testkinfroduced the
concept oke-testsn PSRs that are indicator functions of aggregate sets of future outcomes,
e.g. all sequence of observations in the immediate future that end with a particular obser-
vation afterk timesteps. In general, tests in discrete PSRs can be indicator functions of
arbitrary statistics of future events, thus encoding nonlinearities that might be essential for
modeling some dynamical systems. Recently, Exponential Family PSRs (EFPSRS) [
were introduced as an attempt to generalize the PLG model to allow general exponential
family distributions over the nex¥ observations. In the EFPSR, state is represented by
modeling the parameters of a time-varying exponential family distribution over theé\hext
timesteps. This allows graphical structure to be encoded in the distribution, by choosing
the parameters accordingly. The justification for choosing an exponential family comes
from maximum entropy modeling. Though inference and parameter learning are difficult
in graphical models of non-trivial structure, approximate inference methods can be uti-
lized to make these problems tractable. Like PLGs, the dynamical component of EFPSRs
is modeled byextendingandconditioningthe distribution over time. However, the method
presented {9 has some drawbacks, e.g. the extend-and-condition method is inconsistent
with respect to marginals over individual timesteps between the extended and un-extended
distributions.
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6.4.2 Hybrid Models, Mixture Models and other recent approaches

RR-HMMs and their algorithms are also related to othdsrid modelsNote that previous
models of the same name (e.g4]) address a completely different problem, i.e. reducing
the rank of the Gaussian observation parameters. Since shortly after the advent of LDSs,
there have been attempts to combine the discrete states of HMMs with the smooth dynam-
ics of LDSs. We perform a brief review of the literature on hybrid models; 88ef¢r a

more thorough review.&[] formulates a switching LDS variant where both the state and
observation variable noise models are mixture of Gaussians with the mixture switching
variable evolving according to Markovian dynamics, and derives the (intractable) optimal
filtering equations where the number of Gaussians needed to represent the belief increases
exponentially over time. They also propose an approximate filtering algorithm for this
model based on a single Gaussiafi./][proposes learning algorithms for an LDS with
switching observation matrices.8d] reviews models where both the observations and
state variable switch according to a discrete variable with Markov transititidgen Fil-

ter HMMs (HFHMMSs) [89) combine discrete and real-valued state variables and outputs
that depend on both. The real-valued state is deterministically dependent on previous ob-
servations in a known manner, and only the discrete variable is hidden. This allows exact
inference in this model to be tractabl@] formulates theMixture Kalman Filter(MKF)

model along with a filtering algorithm, similar tG§] except that the filtering algorithm is
based on sequential Monte-Carlo sampling.

The commonly usetliMMs with mixture-model observatiofe.g., Gaussian mixture)
are a special case of RR-HMMs. Rstate HMM where each state corresponds to a
Gaussian mixture ofn observation models af dimensions each is subsumed by:-a
rank RR-HMM with m distinct continuous observations efdimensions each, since the
former is constrained to be non-negative andl in various places (thé-dimensional
transition matrix, the:-dimensional belief vector, the matrix which transforms this belief
to observation probabilities) where the latter is not.

Switching State-Space Mod€¢8SSMs) 5] posit the existence of several real-valued
hidden state variables that evolve linearly, with a single Markovian discrete-valued switch-
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ing variable selecting the state which explains the real-valued observation at every timestep.
Since exact inference and learning are intractable in this model, the authors derive a
structured variational approximation that decouples the state space and switching vari-
able chains, effectively resulting in Kalman smoothing on the state space variables and
HMM forward-backward on the switching variable. In their experiments, the authors find
SSSMs to perform better than regular LDSs on a physiological data modeling task with
multiple distinct underlying dynamical models. HMMs performed comparably well in
terms of log-likelihood, indicating their ability to model nonlinear dynamics though the
resulting model was less interpretable than the best SSSM. More recently, models for
nonlinear time series modeling such as Gaussian Process Dynamical Models have been
proposed{1]. However, the parameter learning algorithm is only locally optimal, and ex-
act inference and simulation are very expensive, requiring MCMC over a long sequence of
frames all at once. This necessitates the use of heuristics for both inference and learning.
Another recent nonlinear dynamic model$<], which differs greatly from other methods

in that it treats each component of the dynamic model learning problem separately using
supervised learning algorithms, and proves consistency on the aggregate result under cer-
tain strong assumptions.

6.5 Discussion

Much as the Subspace ID algorithm (Chaggprovides a predictive, local optima-free
method for learning continuous latent-variable models, the spectral learning algorithm
here blurs the line between latent variable models and PSRs. PSRs were developed with
a focus on the problem of an agent planning actions in a partially observable environ-
ment. More generally, there are many scenarios in sequential data modeling where the
underlying dynamical system has inputs. The inference task for a learned model is then to
track the belief state while conditioning on observations and incorporating the inputs. The
input-output HMM (I0-HMM) [17] is a conditional probabilistic model which has these
properties. A natural generalization of this work is to the task of learning RR-HMMs with
inputs, or controlled PSRs. We discuss this further in Chapt&¥e recently carried out
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this generalization to controlled PSRs; details can be founddh [

The question of proving containment or equivalence of RR-HMMs with respect to
PSRs is of theoretical interest. The observable representation of an RR-HMM is a Trans-
formed PSR (TPSR)/[], so every RR-HMM is a PSR; it remains to be seen whether every
PSR corresponds to some RR-HMM (possibly with an infinite number of discrete hidden
states) as well. The idea that “difficult” PSRs should somehow correspond to RR-HMMs
with very large or infinite state space is intuitively appealing but not straightforward to
prove. Another interesting direction would be to bound the performance of the learning
algorithm when the underlying model is only approximately a reduced-rank HMM, much
as the HKZ algorithm includes bounds when the underlying model is approximately an
HMM [ 17]. This would be useful since in practice it is more realistic to expect any under-
lying system to not comply with the exact model assumptions.

The positive realization problem, i.e. obtaining stochastic transition and observation
matrices from the RR-HMM observable representation, is also significant, though the ob-
servable representation allows us to carry out all possible HMM operations. HKZ de-
scribes a method based ai] which, however, is highly erratic in practice. In the RR-
HMM case, we have the additional challenge of firstly computing the mininfalr which
a positive realization exists, and since the algorithm learns PSRs there is no guarantee that
a particular set of learned parameters conforms exactly to any RR-HMM. On the applica-
tions side, it would be interesting to compare RR-HMMs with other dynamical models on
classification tasks, as well as on learning models of difficult video modeling and graph-
ics problems for simulation purposes. More elaborate choices of features may be useful
in such applications, as would be the usage of high-dimensional or infinite-dimensional
features via Reducing Kernel Hilbert Spaces (RKHS).
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Chapter 7
Future Work and Discussion

The area of dynamical system modeling is of great importance to machine learning and

robotics, and the ideas in this thesis lead to many promising avenues of research in these
fields. In this chapter we first describe several possible extensions of models and algo-

rithms we have presented. We next summarize the main contributions of this thesis and

discuss its significance in the context of the larger body of machine learning research.

7.1 Future Work

7.1.1 Scaling STACS for learning very large state-space HMMs

While efficientinferencealgorithms have been proposed for HMMs with up to a thousand
states based on specific properties of the underlying parameter ggaéé][ it is more
difficult to learn exact HMMs of such large finite state space size. Research on the infinite
HMM and its variants 72, 21] provides sampling-based methods for learning nonpara-
metric HMM models with an effectively infinite number of states, but these algorithms are
inefficient and don’t scale well to high-dimensional sequences. The STACS and V-STACS
algorithms presented in Chapteefficiently learn accurate models of HMMs with up to a

hundred states or so. Beyond that, several factors hinder efficient and accurate learning:
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1. The computational cost of performing split-tests on each HMM state at every model
expansion step.

2. The cost of performing EM or Viterbi Training on the entire HMM in every model
learning step.

3. The increased chance faflse positivesn the candidate testing step.

The upshot is that, if we do manage to learn accurate models of this size, the aforemen-
tioned inference algorithms for large-state-space HMMs would allow us to carry out effi-
cient inference in these learned HMMs under a variety of possible additional assumptions,
some of which are relatively reasonable for large state spaces (e.g. assuming the transition
matrix is additively sparse- low-rank [48]).

One way to address (1) lazy testingof candidates. If a particular candidate state
changes minimally between model expansion steps in terms of its transition and observa-
tion distributions, it is unlikely that its rank as a split candidate will change much. We
can develop this intuition further to form a criterion for selectively testing only those can-
didates that either were likely candidates in the previous model expansion step or have
changed substantially since then. Another, more exact way of addressing (1) is to take
advantage of the highly decoupled nature of split-tests for each state and run tham in
allel, which is an increasingly feasible option in light of the growing availability of parallel
architectures and software for parallelizing conventional machine learning algorithms.

The limitation of performing EM on large state spaces (2) can similarly be addressed
by exploiting recent developments in parallelizing belief propagation (€4)). [Another
possibility is to only update regions of state space that have changed significantly w.r.t.
previous iterations.

During split testing, the null hypothesis states that no split justifies the added com-
plexity (either through BIC score, test-set log-likelihood or other metric). The increased
risk of false positives in split testing (3) arises from the increased number of alternative
hypotheses available, since the likelihood that one of them will randomly beat the null hy-
pothesis increases. We can use techniques inaoiitiple hypothesis testiffg6] to modify

106



the split scores and compensate for this phenomenon. Though this avoids continuing to
split needlessly, it doesn’t necessarily make sure we choose the best candidate at each iter-
ation. A more accurate scoring criterion based on variational Bay$®f using test-set
loglikelihood for scoring (if enough data and computational resources are present) would
help address this issue.

7.1.2 Constraint generation for learning stable PSRs

Stability is a desirable characteristic of a wide variety of sequential data models. For exam-
ple, a necessary condition for a PSR to be stable is that the sum of the observable operators
in a PSR or OOM must have at most unit spectral radliGhapter6 describes a spectral
learning algorithm for RR-HMM s that is also shown to be able to learn PSRs/OOMs (Sec-
tion A.5 in the Appendix). The constraint generation algorithm described in Chapter

can be adapted to solve a quadratic programming problem that constrains the appropriate
spectral radius in order to achieve stability. Since PSRsadgtions(i.e. controlled PSRk

were designed with the goal of enabling efficient and accyniaiening stability becomes
especially desirable for PSR parameters.

7.1.3 Efficient planning in empirically estimated RR-POMDPs

Because of the difficulties associated with learning POMDPs from data, POMDP planning
is typically carried out using hand-coded POMDPs whose belief evolves in a pre-specified
state space. However, the spectral learning algorithm for RR-HMMs, together with ef-
ficient point-based planning algorithms such &g, [99, ], can allow us toclose the

loop by learning models, planning in them and using the resultant data to update the learnt
model. This effectively leaves the task of state space formulation up to spectral learning to
decide the optimal subspace for planning. While not as easily interpretaisleri, this
method has the potential of discovering far more compact state spaces for planning prob-

the sufficient condition, namely that the model only emits positive probabilities, is undecidahle [
However, setting negatives to a small positive number and renormalizing works in practice.
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lems based on the specific task and value function involved, especially since RR-POMDPs
are more expressive than POMDPs of the same dimension. The connection of RR-HMMs
to PSRs means that such a generalization would effectively learn models of controlled
PSRs from data. We have recently extended the spectral learning algorithm to this sce-
nario, with positive results; in particular, we are able to close the learning-planning loop
by carrying out planning in a model estimated from data on a simulated high-dimensional
vision-based robot navigation taskj. Note that this is different from Linear-Quadratic-
Gaussian (LQG) control, which is the task of optimally controlling an LDS that has control
inputs.

7.1.4 Learning RR-HMMs over arbitrary observation features

We discussed how to learn RR-HMMs over single observations as well as stacked vectors
of multiple observations for multiple-step observable systems. The logical generalization
is to enable RR-HMMs over arbitraipdicative and characteristic featured past and

future observations. We can show that the same spectral learning algorithm yields unbi-
ased estimates for RR-HMM parameters over such features. Generalization of the sample
complexity bounds should in principle follow using the same sampling bounds and matrix
perturbation bounds as used here, and is an important task for future work.

7.1.5 Hilbert space embeddings of RR-HMMs

An alternative generalization of RR-HMM expressiveness is to infinite-dimensional fea-
ture spaces via kernels. Recent work has shown how to embed conditional distributions
in Hilbert space [01], allowing generalization of conditional distributions to infinite-
dimensional feature spaces for several applications. Since a sequential model is basically
a series of conditional distributions, (1] describes an application of conditional distri-
bution embedding to learning LDS models when the latent state is observed. It should
be possible to formulate a kernelized HMM or RR-HMM in a similar fashion. Further
extending the spectral learning method to learn RR-HMMs in Hilbert space would allow
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HMMs over much more complex observation spaces.

7.1.6 Sample complexity bounds for spectral learning of PSRs

We saw in Chapte® that the RR-HMM learning algorithm returns unbiased estimates of
PSRs as well. In fact, even though for finite data samples the model returned may not
correspond to any RR-HMM of finite state space size, it always corresponds to some PSR

if it is stable. What remains to be done is to generalize the sample complexity bounds
to the PSR case as well. Since there are no distinct observation and transition matrices
in PSRs, and the observable operators and belief states are not necessarily stochastic, the
bounds and proofs may differ. However, the same basic perturbation and sampling error
ideas should, in theory, hold.

7.1.7 Spectral learning of exponential family RR-HMMs

Belief Compressiofil 07 exploits the stochasticity of HMM beliefs in order to compress
them more effectively for POMDP planning using exponential family PCAY. In a
similar vein, it should be possible to extend RR-HMMs and their learning algorithms to
the exponential family case. Gordon (2002){] presents a more efficient and general
algorithm for carrying out exponential family PCA which could be used for such an ex-
tension.

7.2 Why This Thesis Matters

Whether the goal is to perform accurate prediction and sequence classification for statis-
tical data mining, or to model a partially observable dynamic environment for reasoning
under uncertainty, the modeling of dynamical systems is a central task. Due to their the-
oretical properties and their effectiveness in practice, LVMs are the predominant class of
probabilistic models for representing dynamical systems. This thesis has proposed several
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new algorithms for learning LVMs from data more efficiently and accurately than previous
methods, and has also proposed a novel model that combines desirable properties of exist-
ing models and can be learned with strong performance guarantees. The thesis contributes
a number of novel ideas for addressing fundamental problems in sequential data modeling
techniques. For example, we address the problem®atkl selection and local mininia
EM-based HMM learning by proposing the first practical top-down HMM model selection
algorithm that discovers new states using properties of the observation distribution as well
as the temporal patterns in the data. We also address the isgstatiility, proposing a
constraint-generation algorithm that outperforms previous methods in both efficiency and
accuracy. Finally, the RR-HMM is a hybrid model that combines the discrete spaces and
competitive inhibition of HMMs with the smooth state evolution of LDSs. The spectral
learning algorithm we propose for it is qualitatively different from EM-based methods,
and is based on the first known HMM learning algorithm with provable performance guar-
antees. We extended the bounds in a way that makes them significantly tighter for cases
where the actual HMM rank is much lower than its state space size. This model and its
learning algorithm also blurs the line of distinction between LVMs and PSRs even further.

For each of the above three branches of this thesis we demonstrated experimental re-
sults on a wide variety of real-world data sets. We also outlined numerous promising
extensions of all three branches earlier in this chapter. The research presented in this
thesis has the potential to positively impact a variety of fields of application where se-
guential data modeling is important, such as robot sensing and planning, video modeling
in computer vision, activity recognition and user modeling, speech recognition, time se-
ries forecasting in science and science, bioinformatics, and more. Many of the extensions
described above are already being researched and implemented, demonstrating that this
thesis lays the groundwork for several fruitful lines of current and future research in the
field of statistical machine learning as well as in application areas such as robotics.
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Appendix A

RR-HMM Detalils

This appendix contains details omitted from Chajgténcluding learning algorithm per-
formance proof details, a proof sketch regarding learning with ambiguous observations,
and parameter values for synthetic HMM experiments.

A.1 Proofs

Proofs for theoretical guarantees on the RR-HMM learning algorithm are given below,
after some preliminary conditions and lemmas.

The proof of Theoren2 relies on Lemmad8 and24. We start off with some preliminary
results and build up to proving the main theorem and its lemmas below.

A remark on normsThe notation| X ||, for matricesX € R™*" denotes theperator
1 Xvll,,
vl

asspectral norn), which corresponds to tHargest singular valuer; (X). Frobenius norm
1/2

is denoted by| X ||, = (ZZZI > i XZ) . The notatiorj| X ||, for matrices denotes the

L, matrix norm which corresponds toaximum absolute column sumax, Y .-, | X.|.

The definition of||z||, for vectorsz € R™ is the standard distance meas(y€;__ a:f)l/”.

normmax

for vectorv # 0. Specifically,||.X ||, denotes., matrix norm(also known
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A.1.1 Preliminaries

The following conditions are assumed by the main theorems and algorithms.

Condition 3 [Modification of HKZ Condition 1}7 > 0 element-wise]" has rankk (i.e.
R and S both have ranlé) and O has rank at leask.

The following two conditions orR can always be satisfied by scaling down entries in
R and scaling ugp' accordingly. However we want entries into be as large as possible
under the two conditions below, so that(UTOR) is large andl /o, (UTOR) is small to
make the error bound as tight as possible (Thedteriience we pay for scaling dowi
by loosening the error bound we obtain for a given number of training samples.

Condition 4 ||R||, < 1.
Condition 5 For some column < ¢ < k of R, itis the case thaf R, c|||, < v/k/m.

The above two conditions oR ensure the bounds go through largely unchanged from
HKZ aside from the improvement due to low rabkThe first condition can be satisfied in

a variety of ways without loss of generality, e.g. by choosing the columistofbe any

k independent columns df, andS to be the coefficients needed to reconstriidtom

R. Intuitively, the first condition implies thak does not overly magnify the magnitude

of vectors it multiplies with. The second one implies a certain degree of uniformity in at
least one of the columns d@?. For example, the uniform distribution in a column Bf
would satisfy the constraint, whereas a column of the identity matrix would not. This does
not imply that7" must have a similarly near-uniform column. We can foRrirom the
uniform distribution along with some independent columns of T.

The observable representation depends on a niatdxR™** that obeys the following
condition:

Condition 6 [Modification of HKZ Condition 2V TOR is invertible.
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This is analogous to the HKZ invertibility condition @A™ O, sinceOR is the matrix that
yields observation probabilities fromlew-dimensionaktate vector. Hencé/ defines a
k-dimensional subspace that preservesltedimensionaktate dynamics regardless of
the number of states.

Condition 7 Assume thas diag(7)OT has full row rank (i.ek).

This condition amounts to ensuring that that the rang§esnd O, which are both at
least rankk, overlap enough to preserve the dynamics when mapping down to the low-
dimensional state. As in HKZ, the left singular vectorsif; give us a validlU matrix.

Lemma 8 [Modification of HKZ Lemma 2] Assume Conditiohand?7. Thenyrank(P, ;) =
k. Also, ifU is the matrix of left singular vectors @, ; corresponding to non-zero singu-
lar values, thenange(U) = range(OR), soU € R™* obeys Conditior.

PrRoOF From its definition, we can show#?, ; can be written as a low-rank product of
RR-HMM parameters:

[P2,1]i,j = Pf[l’z =1,T1 = j]

=) Prley =i,z =j hy=a,hy =b] (marginalizing hidden statég

=Y Prfzy = i|hy = a] Pr[hy = a|hy = b] Pr[zy = j|hy = b] Pr[hy = b]

= Z Z Oia T[0Ty,
= P, = OT diag(7)O0"
= ORS diag(7)0O" (A.1)

Thusrange(P, ;) C range(OR). This shows thatank (P, ;) < rank(OR).
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By Condition7, S diag(7)OT has full row rank, thu$' diag(7)O7 (S diag(®)OT)* =
Ii.«1. Therefore,

OR = Py(S diag(7)0")* (A.2)

which impliesrange(OR) C range(F21), which in turn impliesank(OR) < rank(P ;).

Together this proves thatnk(/ ;) = rank(OR), which we can show to bé as
follows: Condition3 implies thatrank (UTOR) = k, and henceank(OR) > k. Since
OR € R™* rank(OR) < k. Thereforerank(OR) = k. Hencerank(P, ;) = k.

Sincerange(U) = range(P, 1) by definition of singular vectors, this impliesnge(U) =
range(OR). Therefore(UTOR) is invertible and henct obeys Conditiors. O

The following lemma shows that the observable representaﬁgr,\l;l, By,...,B,}
is linearly related to the true HMM parameters, and can compute the probability of any
sequence of observations.

Lemma 9 [Modification of HKZ Lemma 3] (Observable HMM Representation). Assume
Condition3 on the RR-HMM and Conditiod on the matrix/ € R™**. Then, the observ-
able representation of the RR-HMM (Definition 1 of the paper) has the following proper-
ties:

1., = (UTORm = (UTO)m,
2.bL = 1TR(UTOR)™,
3. Forallz=1,....,n: B, = (UTORW,(UTOR)™!
4. For any timet: Pr[z1,] = bLBy,,.1b
PROOF.
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1. We can writeP, asO, since
[P\); = Prlz, = 1]
= Z Pr{zy =i|lh; = a] Pr[h; = d
a=1
= Z Oiaﬁa
a=1
Combined with the fact thd?tl = UT]31 by definition, this proves the first claim.
2. Firstly note thatP] = 1T 7" diag(7)O7, since
p’lT — —»TOT
= 1T diag(7)O"
= 11T diag(7)0" (sincel] T =1T)
This allows us to write?; in the following form:
Pl =17 T diag(m)O"
= 1T RS diag(m)O"

R(UTOR)"Y(UTOR)S diag(7)O"

=17
—1ITR(UTOR)"'UTP,; (by equation A.1))

m

By equation p.1), UTP,; = (UTOR)S diag(7)OT. Since(UTOR) is invertible
by Condition6, and.S diag(7)OT has full row rank by Conditior7, we know that
(UTP,;)" exists and

UTPy (U Py1)" = Lk (A.3)
Therefore,
bl =PI (U Py)t =10 RUTOR) {(UTPy1)(UTPyy)" = 1] RWUTOR) ™"
hence proving the second claim.

115



3. The third claim can be proven by first expressifig, ; as a product of RR-HMM
parameters:

[PS,:L’,l]ij = PI‘[I’g = i,ZEQ =T, T = j]

:iiiPr[xg—l To = =7j,hs =a,hy =b,hy =

=> Y Prlas =ilhs = a] Pr[hs = alhy = b] Prlxy = x|hy = D]

PI‘[hQ = b|h1 = C] Pr[h1 = C] PI'[JZl = j’hl = C]

= Z Z Z Om [Ax]abTbcﬁc[OT]Cj
= PS,x,l == OA:): 1ag(7?)OT

This can be transformed as follows:

Py .1 = OA,RS diag(7)0"
= OA.R{UTOR) M (UTOR)S diag(7)OT
= OAR(UTOR)'UT(OT diag(7)O")
= OA,R(UTOR)"'UTP,; (by equation A.1))

and then plugging in this expression into the definitiol3gf we obtain the required
result:

= (U"P3.1)(U"Py1)"  (by definition)

= (UTO)A,R(UTOR) ™ (UT P2y )(UT Pyy)*
= (UTO)A,R(UTOR)™ (by equation A.3))
= (UTOR) (S diag(0,.)R) (UTOR)™*

= (UTOR)W,(UTOR)™
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4. Using the above three results, the fourth claim follows from equation 1 in Section 2
in the paper:
Przy, ...,z
= 1T RW,, ... W,, 7,
1T RUUTOR) M (UTOR)W,,(UTOR) Y (UTOR)W,, ,(UTOR)™*...
. (UTORW,,(UTOR)"W(UTOR)7,
2 Bu by

g g

—

.1 Y1

O

In addition t051 above, we define normalized conditional ‘internal stat?e$hat help us
compute conditional probabilities. These internal states are not probabilities. In contrast
to HKZ where these internal states aredimensional vectors, in our case the internal
states aré-dimensional i.e. they correspond to the rank of the HMM. As shown above in
Lemma),

by = (UTOR)® = (UTO)%
In addition for anyt > 1, given observations;.;_; with non-zero probability, the internal
state is defined as:
B,,_,.bi

b;BIt71:1b1

Fort = 1 the formula is still consistent sindg_b, = 1T R(UTOR) "N (UTOR)7, =
ITR7y =117 =1.

gt = gt(xht—l) =

(A.4)

Recall that HMM and RR-HMM parameters can be used to calculate joint probabilities
as follows:
Prlay, .., a] = 1T Ay Ay, -+ Ay, T
— 1T RS diag(O,,.)RS diag(O,, ,.)R---S diag(O,,.)7
=17 R(S diag(O,,)R) (S diag(O,, ,.)R)---(S diag(O,, )R) ST
= 1T RW,, ... W,,®@ (by definition of W, 7)) (A.5)
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The following Lemma shows that the conditional internal states are linearly related, and
also shows how we can use them to compute conditional probabilities.

Lemma 10 [Modification of HKZ Lemma 4] (Conditional Internal States) Assume the
conditions of Lemma hold, i.e. Condition$ and6 hold. Then, for any time&

1. (Recursive update) Pr|zy, ..., z;] > 0, then
g thbt
B

2. (Relation to hidden states)
gt = (UTORﬂt(xl:tfl) = (UTO)ht(mlztfﬁ

where [ﬁt(xlzt,l)]i = Pr[h; = i|x14_1] is defined as the conditional probability
of the hidden state at time given observations:.;_;, and l:(:cl;H) is its low-
dimensional projection such thég(xlzt_l) = Rl:(xlzt_l).

3. (Conditional observation probabilities)
Pr[l‘t|xlzt—1] = E;thgt
PROOF. The first proof is direct, the second follows by induction.

1. Thet = 2 caseb, = —21%_ s true by definition (equatioA.4). Fort > 3, again

l_)IOle by

by definition ofb; ; we have

- By, b
t+1 EIOBIt:lgl

By, By, b

by
gl—ont 1 151_' 7
—1: T
Py 7 booBItBUthmbl

bIOBCctflzlbl

Tt—1:1

= Bub (by equation 4.4))

= B by
T Tt—1:1
bOOth g.r B -
T wy_1:1b1

B, b .
= —"— (byequationp.4
B0, (by eq R.4))
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2,3. The base case for claim 2 holds by Lemﬁjasinceﬁl = T, fl = R« and 51 =
(UTOR)®. For claim 3, the base case holds siideB, b; = 1T RW, @ by
Lemma9, which equal®r|x;] by equation A.5). The inductive step is:

—

- B, b, )

biy1 = ———— (by claim 1 above

t+1 0T B, (by )
_ B, (UTOR);

(by inductive hypothesis)

B Pf[fﬂt|$1:t—1]

(UTORYW,,1,

=" """ (by Lemma9
Prlx|z1s 1] (by )
UTO)Ay,h o [ L
= WOV A Ry, = RS diag(Ou, ) RE, = AT}
Prz|z -]

Now by definition ofA,, i,

Pr[ht+1 == mt‘xl:tfl]

b = (UTO
S G e P P

Prihip1 = |1 Prlzy|er1]
Pl‘[ﬂft‘xl;tq]

= (UTO)HtH(-fl:t)

= (UTOR)Z:H(%:;:)

= (UT0)

This proves claim 2, using which we can complete the proof for claim 3:

bY By, bi1 = 1T RWUTOR) ™M (UTOR)W,,(UTOR) by,  (by Lemma9)
= 1T RW,,(UTOR) "M (UTOR)l,,; (by claim 2 above)
= 1T RW, li11
— 1T RS diag(O,,.)Rl;s, (by definition ofi/,,)
= T;rnT diag(oxt,)ﬁtﬂ

— T;rnAx,« ]tit—i-l
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Again by definition ofA,, 7. 1,

Z Pr[$t+1|ht+1 = a] Pr[ht+1 = Cb|ht = b] Pr[ht = b|x1:t]

1 b=1

NE

—».I- —
booB$t+1 bt+1 =

a

NE
NE

Pr[$t+1, hiy1r = a, hy = b|$1:t}

o
Il

1

a

1
r[l’t+1|l’1:t]

O

Remark 11 If U is the matrix of left singular vectors a@%,; corresponding to non-zero
singular values, thefy is the observable-representation analogue of the observation prob-
ability matrix O in the sense that, given a conditional statePr[z, = i|z1,_1] = [Ub,];

in the same way aBr[z; = i|z1, 1] = [szt],- for a conditional hidden stat,.

PROOF. Sincerange(U) = range(OR) (Lemma 2), and/U " is a projection operator to
range(U), we havel/lUTOR = OR, soUb, = U(UTOR)I, = ORI, = Oh,. O

A.1.2 Matrix Perturbation Theory

We take a diversion to matrix perturbation theory and state some standard theorems from
Steward and Sun (1990)(05 and Wedin (1972)10€ which we will use, and also prove a
result from these theorems. The following lemma boundd.theorm difference between

the pseudoinverse of a matrix and the pseudoinverse of its perturbation.

Lemma 12 (Theorem 3.8 of Stewart and Sun (1990)f]) Let A € R™*", withm > n,
andletA = A + E. Then,

S1+\/3

2
2 2 27

H;ﬁ At

e {47

[} i,

The following lemma bounds the absolute differences between the singular values of a
matrix and its perturbation.
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Lemma 13 (Theorem 4.11 of Stewart and Sun (1990)1]). Let A € R™*" withm > n,
and letA = A + E. If the singular values oft and A are (o, > ... > 0,,) and (5, >
... > 0,), respectively, then

5 — o <||E|l, i=1,....n

Before the next lemma we must define the notiowafonical anglebetween two sub-
spaces:

Definition 14 (Adapted from definition 4.35 of Stewart (1998))}]) Let X andY be
matrices whose columns comprise orthonormal bases optdimensional subspaces
and ) respectively. Let the singular values &f'Y (where X' denotes the conjugate
transpose, or Hermitian, of matriX’) be v;,72,...,7,. Then thecanonical angle$;
betweenY and) are defined by

0, =cos ', i=1,2,....p
Thematrix of canonical angle® is defined as

O(X,Y) = diag(by,0s,...,06,)

Note thatvi ~; € [0, 1] in the above definition, sincg (assuming it's the highest singular
value) is no greater tham (X ")o,(Y) < 1-1 = 1, and henceos™! v; is always well-
defined.

For any matrixA, defineA ; to be theorthogonal complemermf the subspace spanned
by the columns ofA. For example, any subset of left singular vectors of a matrix comprise
the orthogonal complement of the matrix composed of the remaining left singular vectors.
The following lemma gives us a convenient way of calculating the sines of the canonical
angles between two subspaces using orthogonal complements:

Lemma 15 (Theorem 4.37 of Stewart (1998)([/]) Let X andY ben x p matrices,
with n > p, whose columns comprise orthonormal bases ofjvianensional subspaces
X and ) respectively. Assum& .Y, € R™" P such that[X X ] and[Y Y,] are
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orthogonal matrices. The singular values¥f X are the sines of the canonical angles
betweent and) .

The following lemma bounds thé,-norm difference between the sine of the canonical
angle matrices of the range of a matrix and its perturbation.

Lemma 16 ([106],Theorem4.4 of Stewart and Sun (1990)105). Let A € R™ ™ with
m > n, with the singular value decompositiobi;( Us, Us, 31, 3o, V1, V3):

Ul S0
vf [ Alvi v]=] 0 5
Uy 0 0

LetA = A+ E, with analogous SVDﬁl, (72, (73, il, ig, 533, 171, 172). Let® be the matrix
of canonical angles betweeange(U;) andrange(U;), and © be the matrix of canon-
ical angles betweenange(V;) and range(V;). If there existsy > 0,a > 0 such that

mino(X;) > o+ 6 andmax o () < «, then

E
max {sin @, , [sin ©]|,} < LE]2

(=%

The above two lemmas can be adapted to prove that Corollary 22 of HKZ holds for the
low-rank case as well, assuming that the perturbation is bounded by a number legs than
The following lemma shows that (1) tit¢" singular value of a matrix and its perturbation
are close to each other, and (2) that the subspace spanned by thaifgtlar vectors of

a matrix is nearly orthogonal to the subspace spanned bgithel)™ ... m' singular
vectors of its perturbation, with the matrix product of their bases being bounded.

Corollary 17 [Modification of HKZ Corollary 22] LetA € R™*™, with m > n, have
rank k < n, and letU € R™** be the matrix of left singular vectors corresponding to
the non-zero singular values > ... > o, > 0 of A. LetA = A+ E. LetU € R™**
be the matrix oft left singular vectors corresponding to the largéssingular values
G, > ... > 6, of A, and letU, € R™(m=%) pe the remaining left singular vectors.
Assumd|E||, < eoy, for somee < 1. Then:
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1. 5kz Z (1 — E)O‘k.
2. |01, < 1B, /30
PROOF

1. From Lemmal3,
0% — ok < || E]l,
|gk — O'k| S €0}
bv'k — Ok > — €0k
5k 2 (1 - E)O'k
which proves the first claim.
2. Recall that by Lemmab5, if ¢ is a matrix of all canonical angles betweemnge( Pz ;)

andrange(ﬁg,l), thensin ® contains all the singular values ﬁﬂU along its diago-
nal.

Also recall that the., norm of a matrix is its top singular value. Then,

|sin®||, = o1(sin®) (by definition)
= max diag(sin ®) (sincesin ® is a diagonal matrix)
=0, (U]U) (by Lemmal5)
_ H ﬁIUH2 (by definition)

Invoking Lemmal6 with the parameter valugs= o, anda = 0 yields||sin ||, <
| E||, /&,. Combining this with|sin ®||, = H(ﬁIU)H proves claim 2.
2

A.1.3 Supporting Lemmas

In this section we develop the main supporting lemmas that help us prove Th2orem
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Estimation Errors

We definee;,eo; andes . ; as sampling errors fQﬁ,PQ,l andP; , 1 respectively:

e =|P—P (A.6a)

F
€21 = ﬁ2,1 — Py p (A.6b)
€3,2,1 = ﬁS,x,l — P37$71 ‘F forxz = 1, o, n (A6C)

Lemma 18 [Modification of HKZ Lemma 8] If the algorithm independently samplées
observation triples from the HMM, then with probability at ledst #:

A

IN

=
I | w
+

2|

€2.1 <

_|_

ZIH =2] =

=3
dlco I | w

_|_
2|~2|§\2|§\

maxes 1 <
X

g €3,2,1 <m1n

x

k § \/ +2€ + ihrlé%—\/l
n VN g N

Before proving this lemma, we need some definitions and a preliminary result. First, we
restateMcDiarmid’s Inequality] 104]:

/N

Theorem 19 Let 74, ..., Z,, be independent random variables all taking values in the
setZ. Letc; be some positive real numbers. Further, fet Z™ — R be a function of
Ziy. .., Zny that satisfies/i, Vzy, ..., 2m, 21 € Z,

1f(z1, s Ziy e zm) — (21, 20 zm)| < i
Then for alle > 0,
—9¢2
Prif —E[f] = €] < exp <Tf03) :
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Assumez is a discrete random variable that takes on valués in. , d. The goal is to
estimate the vectof = [Pr(z = j)|7_, from N i.i.d. samples;; (i = 1,...,N). Lete;
denote thg*® column of thed x d identity matrix. Fori = 1,..., N, Suppose; is a column
of thed x d identity matrix such thaf;(j) = e.,. In other words, the!* component ofj;
is 1 and the rest are. Then the empirical estimate @fin terms ofg; is g = ZL q;/N.

Each part of Lemma8 corresponds to bounding, for somiigthe quantity

~ 2
Hq_‘ﬂ‘z

We first state a result based on McDiarmid’s inequality (Theot&m

Proposition 20 [Modification of HKZ Proposition 19] For alk > 0 andg,qand N as
defined above:

Pr(lg—al, = 1/VN +¢) < e

PROOF. Recall§ = 3_~ /N, and defingg = SV, 5;/N wherep, = §; except for
¢ = k, andp, is an arbitrary column of the appropriate-sized identity matrix. Then we
have

lg—all, — P —dll, < [gd—pll, (by triangle inequality)
= H(Z @)/N = (Q_F)/N
= (1/N) ||gx — Pkll, (by definition ofp, g and L,-norm)

< (1/N)V1Z 7+ 12
=V2/N

2

This shows thatig — ¢J|, is a function of random variableg, . . ., gy such changing the
k™ random variabley, for any1 < k < N (resulting in||p — ¢]|,) changes the value of
the function by at most, = +/2/N. Note that7 is not a random variable but rather the
variable we are trying to estimate. In this case, McDiarmid’s inequality (Thed@m
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bounds the deviatiofig — ¢J|, from its expectatior® ||g — ¢]|, as:

22
Pr(llg —qll, = Ellg — 41, +6)<6Xp—2

zlci

—2¢2
N -2/N?
= N€ (A.7)

= exp

We can bound the expected value using the following inequality:

o\ 1/2
N N
|- vl ~x (52w
i=1 2 i=1 2
o\ 1/2
<|E|D @—Ng (by concavity of square root, and Jensens inequal

1/2

(ZEII@-—cﬂIi
1/2
(v

Multiplying out and using linearity of expectation and propertieg; ¢hamely, thaf, ¢; =
1, E(¢) = ¢andqis constant), we get:

N 1/2
E < (Z E(1 - 2477 + ||cﬂ|§)> (sinceq; = 1)
i=1

=1

N
zqz—fv#
2

N 1/2
- (Som0 -2y ma + 3 i)
= (N —2N |lg2 + NH@M“

N(1— 1)
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This implies an upper bound on the expected value:

Y-
< (1/N?)- N(1 - ||qll3)

=E|g—qll, < (1/VN)\/(1 - ||q1l3)
< (1/VN)

E (7 - dl, = (1/N*)E

2

Using this upper bound in McDiarmids inequality (equatién/)), we get a looser version
of the bound that proves the proposition:

2

Pr(|q—qll, 2 1/VN +¢) < e

We are now ready to prove Lemma.

PrROOF[Lemma 18] We will treat ﬁl,ﬁg,l and ]33@,1 as vectors, and use McDiarmid’s
inequality to bound the error in estimating a distribution over a simplex based on indicator
vector samples, using Propositiaf. We know that

Pr (1[G dll, > VI/N +¢) < e
Now let) = e~N<. This implies

Inny = —Né
In(1/n) = Né?

e =/In(1/n)/N

Hence,

Pr(Ig = dll, = VI/N + Vi(1/)/N) <
Therefore, with probability at leagt— 7,

17— qll, < 1/V'N + /In(1/n)/N (A.8)
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Now, in place ofy'in equation .8), we substitute the stochastic vecfrto prove the first
claim, the vectorized version of the stochastic mattix to prove the second claim, and
the vectorized version of the stochasggasorP; , ; € R™*"*" obtained by stacking ., ;
matrices over alk, to prove the third claim. The matricé%m are stacked accordingly
to obtain the estimated tensﬁgm. We get the following:
e1 <1/VN ++/In(1/n)/N  (hence proving the first claim)
€21 < 1/V'N ++/In(1/n)/N (hence proving the second claim)

maxes ;1 < /Z €312

- ¢z |

- \/Z SO S (Poli — [Poatliy)?
x ) i

= \/HP3,2,1 - ﬁ3,2,1

= HP3,2,1 — P39 )

~ 2
PS,x,l - P3,z,1 9

2
2

< v/1/N + /In(1/n)/N  (hence proving the third claim)

Note the following useful inequality from the above proof:

1Y eser? < VI/N 4+ /In(1/n)/N (A.9)

It remains to prove the fourth claim, regardidg, s, 1. First we get a bound that
depends om as follows:

Z €321 = Z 31| (Vo €3,,1 > 0)

x xT

SV Y esan® (-VEERY

T

1
< n/N+,/%1n5
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We aren’t going to use the above bound. Instead, i large andV small, this bound
can be improved by removing direct dependenceioriet ¢(k) be the sum of smallest
n — k probabilities of the second observation Let S, be the set of these — k£ such
observationg;, for anyk. Therefore,

= Prlza=a]=> Y [Py

€Sy z€SE 1,

Now, first note that we can boun)d ¢, €51 as follows:

Z €30,1 < Z |l€3,2.1]

x ¢Sk x ¢Sk
<Vk [ €00 (VTE < Va ||y
¢Sk
By combining with equatio\..9, we get
> esa1 < VE/N +EIn(1/n)/N (A.10)

o ¢Sk
Tobound)_, s €31, We firstapply equation/(.8) again. Consider the vectgiof length
kn? 4+ 1 whose firstin? entries comprise the elements®f, ; for all = ¢ S, and whose
last entry is the cumulative sum of elementsf, ; for all x € S;.. Defineq accordingly
with ]33733’1 instead ofP; , ;. Now equation 4.8) directly gives us with probability at least
1—mn

1
2|2

ZZ P3m1 P3:p12] ZZ P3:v1 Zzpiizlzy S\/l/N‘i‘\/hl(l/n)/N
e¢Sp i TESE i T€S) i
2
ZHﬁ&x,l_PB,x,l‘ ZZ P3a:1 P?)a:lz] (\/1/N+\/ln 1/77 /N)
¢Sk TESK 1,]
Since the first term above is positive, we get
ZZ PSwl — [Paanliy)| < V1IN ++/In(1/n)/N (A.11)
z€SE 1,

129



Now, by definition ofSy:,

E €321 = E szs,m - P3,:c,1 "

€Sy €Sk
< S| Brily — (Proils| €V 1], < [12],)
TESE 1,
= Z Z max < P3a: 1] [PS,ac,l]ij>
z€SE 1,
-y me< 1Pyanlis [Pgm]ij) (.- V7, |7] = [max(0, Z) — min(0, 7)])
€S 1,J
<sza}(< del] P3xlz]> Zzpdxl
z€SE 1,J TESY 1,5
+ZZm1n( ngl ng“]) ZZPMl
z€SE i.J T€ES) 1,5
= Z Z max (0, [ﬁ?y,x,l}ij — [PB,x,l]ij) + G(k’)
T€ESE 1,7
+ 33 min (o (Psanlis [Pg,x,l]ij) +e(k)  (by definition ofe(k))
z€SE 1,]
< Z Z <[ﬁ3,x,1]ij - [P3,r,1]ij> + 2¢(k)
TE€SE 1,J

Plugging in equationA.11), we get a bound oExesk €321

3" e300 < VN + /In(1/n)/N + 2¢(k)
TESK
Combining with equationX.10) and noting thak is arbitrary, we get the desired bound:

263@’1 < mkln[\/k In(1/1)/N + Vk/N 4+ /In(1/n)/N + \/1/N + 2¢(k)]

xT

Note that, to get the tertm(3/7) instead ofin(1/n) as in the fourth claim, we simply
usen/3 instead ofy. This bound ond ;3,1 will be small if the number of frequently
occurring observations is small, evemiftself is large. O

The next lemma uses the perturbation bound in Corollaryo bound the effect of
sampling error on the estimalt& and on the conditioning di/ TOR).
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Lemma 21 [Modification of HKZ Lemma 9] Supposg; < ¢-0y () for somes < 1/2.
Leteg = €5,/((1 — €)ok(Ps,1))?. DefineU, U € R™** as the matrices of the firgt left
singular vectors of>, ;, 13271 respectively. Let,, ..., 60, be the canonical angles between

~

span(U) andspan(U). Then:

1. go <1
2. O'k(UTﬁZl) > (1— E)Uk(PZl)

3. O’k(ﬁTPQ’l) Z \/1 — 800’k(P271)

4. 5,(UTOR) > /T = €00x(OR)

PrRoOOF. First some additional definitions and notation. DeflAﬁg to be the remaining
n — k left singular vectors 013271 corresponding to the lower — k singular values, and
correspondingly/, for P ;. Supposd/SV T = P, is the thin SVD ofP, ;. Finally, we
use the notatiow;{ A} € R? to denote thé'" right singular vectorof a matrixA € Rr*,
Recall thatr;(A) = ||Av;{ A}||, by definition.

First claim:eq < 1 follows from the assumptions:

(1= )ox(Poy)?
520'k<P2’1)2
(11— 5)20;6(P271)2

82

(1-¢)?
<1 (sinces < 1/2)

gy —

Second claimBy Corollary17, ak(ﬁm) > (1—¢)ox(Py1). The second claim follows
from noting thatak(ﬁTﬁQ,l) = ak(]%,l).
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Third and fourth claimsFirst consider thé'" singular value ol/TU. For any vector
r € RF:

HﬁTUx

om0
2 > min 2
[E4[P vyl

= ak(ﬁTU) (by definition of smallest singular value)
= cos(fx) (by Definition14)

=4/1 — sin®(6;)
=4/1— ak(ﬁIU 2 (by Lemmal5)

)
> /1 -0 (UTU)?

2

=4/1— HﬁIU (by definition of L, matrix norm)

2

Therefore,

|670]|, = el 1 - H@UHZ (A.12)
Note that

HﬁIUHz < e31%/0k(Py1)?  (by Corollary17)
< e21” 5 (sinced < e < 1/2)
(1 —¢e)?o(P2)

=¢go (by definition)

Hence, by combining the above with equatiénl(?), since) < g5 < 1:
HﬁTUxH2 > ||zll, vI—2, (forall z € R¥) (A.13)

The remaining claims follow by taking different choiceszoin equation A.13), and by
using the intuition that the smallest singular value of a matrix is the smallest possible
L, norm of a unit-length vector after the matrix has left-multiplied that vector, and the
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particular vector for which this holds is the corresponding right singular vector. For claim
3, letz = XV, {UT P, }. Then by equationX.13):

HﬁTUszﬁk{ﬁTPQ,l}HQ > szTﬁk{ﬁTPm}H2 V1%

Since P, = USVT, and||SVTA{SV T, < [SVTo{TT P}
7{XV T}, we have:

‘ by definition of
2

|0 P07 P} = [SVTomV T, VI =50
ox(UTPy) > 0x(SVT)VI =2, (by definition ofo, (U7 Pyy), 0 (SVT))
O'k([/jTPQ,l) > op(Pei)V1—co (o on(BVT) = 0p(Pa1))

which proves claim 3.

For claim 4, first recall thaOR can be exactly expressed &s,(S diag(7)OT)*
(equation Q.2)). For brevity, letAd = (S diag(7)OT)", so thatOR = P,;.A. Then, let
z = XVT A7 {UTORY} in equation A.13):

HﬁTUZVTAﬁk{UTOR}

> szTAﬁk{(?TOR}H N
2 2
SincePy,; = USVT, and||SVTAG{SVT A}, < HEVTAﬁk{ﬁTOR}H by defini-
2

tion of 7, {SV T A}, we get:

|07 P AB{TTORY | = [BVTAG(VT A}, VT =20
HﬁTORﬁk{ﬁTOR}HQ > on(SVTA)WVT — g (by equation A.2))

By definition ofo,(UTOR), 0, (SV T A), we see that
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ox(UTOR) > o (SVT AW — &
ox(UTOR) > 0, (ORI — 2 (.- 0k(SVTA) = 0Py A) = 0,(OR))

hence proving claim 4. O

Define the following observable representation uding U , which constitutes &rue
observable representation for the HMM as lond@@SOR) is invertible:

600 - (P271Tf]\)+ﬁ1 - ((/jTOR>_TRTTm
By, = (UTPy,1)(UTPyy)* = (UTOR)W,L(UTOR)™" forz=1,....n
gl = UTﬁl

Define the following error measures of estimated parameters with respect to the true ob-

servable representation. The error vectonins projected toR™ before applying the
vector norm, for convenience in later theorems.

b= orG. ]

A, = H(ﬁTOR)—I (Ew - Em) (@"oR)| - H(ﬁTOR)‘lﬁm(ﬁTOR) —w,

A:ZAw

5y = H;@Toml@l “ D)

= HR((?TOR)*@I _7

1

The next Lemma proves that the estimated param@ggrs@xﬁl are close to the true
parameters,,, B,, b, if the sampling errors, , e, 1, €5, are small:

Lemma 22 [Modification of HKZ Lemma 10] Assumeg; < o (F,1)/3. Then:
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8 VE €21 20€3..1
A, < —- - | Prlxy = 2| - : + —

V3 5(OR) ( = B T P
Agi- VE . €21 - Ye€3.21

V3 0k(OR) \ 0p(Py1)”  30k(P2n)

2 k
0 < — vk ‘€1

V3

PrROOF Note that the assumption eg) guaranteeeﬁTOR) to be invertible by Lemmal,
claim 4.

0o bound: We first see thai., can be bounded bH(EOO —500

2

b = H(oTU)(BOO —’BOO)H

[e.e]

IN

07l 06 = 3]

IN

HOO

U (boo — boo)

IA

U(boo — boo)

2

AN
8@)
S
3
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In turn, this leads to the following expression:

e ] = [0 70

= |(BLOY Py = (PoaTO) Pu+ (PoaTO) Py = (P TO) B

((ﬁ2-|:1(7)+ - (P2,1T(7)+> ﬁ1 + (nglT(/]\)—s'(ﬁl — ]31) )

IN

(PLOY = (P "OY)PY| + (o0 (P = )|

< ((13;1[7)+ - (P2,1T[7)+) P, (P, — P)

1 + H(PQJT[/]\)Jr

2 2 2

The last step above obtains from the consistency of/thenatrix norm with L; vector
norm, and from the definition af, matrix norm (spectral norm) gg4|(|, = max ”m”%
2

Now, recall thatU has orthonormal columns, and hence multiplying a matrix With
cannot increase its spectral norm. Hence,

| L0 - PO

BT T\77 BT T
= H(P2,1 — P )UH2 < HPQ,l — P

2 ’2 IR

So, we can use Lemni& to bound thel,-distance between pseudoinverse?'pf{ﬁ and
P271T(7 usinge,; as an upper bound on the difference between the matrices themselves.
Also recall that singular values of the pseudoinverse of a matrix are the reciprocals of the
matrix singular values. Substituting this in the above expression, along with the facts that

Jk(ﬁ;—l[/j> = O'k(ﬁgyl), ’ ﬁl ) =1 and”(ﬁl — ﬁl) ) = €1, gives us:
H/l;oo il < 1 +2\/5' €21 €1
2

+ =
~ N\ 2
min (O’k(PQJ),O'k(PQ,lTU)) ox(P21"U)

Now, to simplify the last expression further, consider Lemaian the above context.
Here, ;1 < o4(Ps1)/3 and hencee = 1/3. Thereforeo,(Ps1) = o(UTPyy) >
(2/3)0%(Pa1) ando, (U Pyy) > /T — £401(Py.1). Hence

A~

~ 2
min (Uk(P271)7 O'k(nglTU)) = O'k<P271)2 : m1n(2/3, V 1— 50)2
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The latter term is larger since

2
€21

(1 = &)ow(Pr1))?
< Uk(P271)2/9

o —

o 40’]@(P271)2/9
—1/4
=1 —¢0>V3/2>2/3

~ ~ \ 2
Thereforemin (ak(Pz,l), ak(PQJTU)) > ak(P271)2(2/3)2. Plugging this into the expres-
sion above along with the fact tha,{;((?TPg,l) > (v/3/2)o1(Py1), we prove the required
result ford..:

5oo§ 1—|—\/3 962’1 2+ 261
2 4o, (Pay) V30 (Pay)

€2.1 €1
<4. - +
<0k(P271)2 Uk(P2,1)>

A,,A bounds: . We first bound each termy, by \/E’ B, — B,

) Jox((UTOR)):

A, = ‘(ﬁTOR)‘l (Em - éx) (ﬁT()R)H1
‘(ATOR)”(EI - EI)[?TH JOR||, (by norm consistency)
1
<VE|(UTOR) (B, — Em)ﬁT‘L |OR||, (by L, vs. L, norm inequality)

<Vk (ﬁTOR)—1H2 B, - B,

HﬁTH IO, IR|l, (by norm consistency)
2 2

2 <
2 (@], nonyimn, <1)

; Jor(UTOR) (. 0max(UTOR) ™! = 1/0,in(UTOR))

<VEk|[(UTOR)™| ||B, — B,

=Vk|B, - B,
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Nx in the numerator can be bounded by
2

)

07 Py (0T o)t = (07 Poaa) (0" Pan)* ||

< H(ﬁTP?J,xJ) <(6TP2,1)Jr — (ﬁTﬁ2,1)+> H2 + HﬁT <P3,a:,1 — P\?),x,l) (ﬁTP2,1)+H2

1+ \/3 €21 €3,2,1
< || Psalls - 5 — Y 5 T =1
min <O‘]€(P271), O-k(UTPQJ)) Uk(U P271)
< Prlws = 2] - +v6 ‘ €2,1 €3,2,1

+ =
~ ~ 2
min (Uk;(PQJ), Uk(UTP2’1)> O-k(UTPQJ)

where the second inequality is from Lemrmaand the last one uses the fact that

1Pszilly < | P3ellp = /ZP3a:1 <Zp3x1 i = Prlay = 2].
,J

Applying LemmaZ21 as in thed,, bound above, gives us the required result®on Sum-
ming both sides over results in the required bound a@xn

9, bound: Ford;, we invoke Conditior# to use the fact thgtR||, < 1. Specifically,

51 - HR(Z?TOR)ilﬁT(ﬁl - ﬁl)
1

(f]\TOR)_IU\T(ﬁ1 - ]31) .

(norm consistency)
< VE|RI, [(@TOR TP - B)| (], < V], for anyz € RY)

< VE|RI, |[(@Tor) 07|
2

o)

(norm consistency)

€1 (defn. ofey, UT has orthogonal columns)
2

<Vk|R|, (T TOR)™
\/Eﬁl

= ———— (||R]|; £1, defn. of Ly-norm)
O'k(UTOR>
The desired bound o# is obtained by using Lemmal. With ¢, ¢, as described in the
above proof fod.., we have that,(UTOR) > (v/3/2)o(UTOR). The required bound

follows by plugging this inequality into the above upper boundsor 0
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A.1.4 Proof of Theorem2

The following Lemmas23 and 24 together with Lemmad8,21,22 above, constitute the
proof of Theoren® on joint probability accuracy. We state the results based on appropriate
modifications of HKZ, and provide complete proofs. We also describe how the proofs gen-
eralize to the case of handling continuous observations using Kernel Density Estimation
(KDE). First, define the following as in HKZ

e(z’):min{ZPr[a:Q:j]:Sg {1...n},|S| :n—z}

j€S

and let
no(e) = min{i : (i) < ¢}

The termny(e), which occurs in the theorem statement, can be interpreted as the mini-
mum number of discrete observations that accounts for of total marginal observation
probability mass. Since this can be much lower than (and independenirofhany ap-
plications, the analysis of HKZ is able to usg instead ofn in the sample complexity
bound. This is useful in domains with large and our relaxation of HKZ preserves this
advantageous property.

The following lemma quantifies how estimation errors accumulate while computing
the joint probability of a length sequence, due to errorsﬁ; andb.

Lemma 23 [Modification of HKZ Lemma 11] Assunié’ OR is invertible. For any time
t:
> ||rwTOR) (Buiby - Bei)

T1:t

| S+AYe+(1+A) 1
1

ProoOF. Proof by induction. The base case fot 0, i.e. thatHR(UTOR)*l@l —Zl)H <
1

01 Is true by definition of,. For the rest, define unnormalized sta?fg& E(a:lzt_l) =
Ewt_mgl andgt = E(xlzt_l) = Ext,lqgl- For some particular > 1, assume the inductive
hypothesis as follows
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S HR((?TOR)—I (Zt —'Et)

x1:t

’1§(1+A)t61+(1+A)t—1

The sum over:.; in the LHS can be decomposed as:

!

= 3 S ||RWTOR T ((Be = Bubi+ (B — Ba)(bi—b) + B = )|

T T1:t—1

3 HR([?TOR)*1 (Bt —Et)

T1:t

Using triangle inequality, the above sum is bounded by

>3 |r@ory (B, - B.) @70)

Tt Tl:t—1

R(UTOR)™'b, 1

1

Yy HR@TOR>_1 (Ext B EIJ (ﬁTO)Hl HR((A]TOR)—l (@ —E)

!

XS |r@onr Bion@on (5|

Each of the above double sums is bounded separately. For the first, we n#tﬁ@fﬁ()m*% X

Pr[z1.4-1], which sums td overz,.,_;. The remainder of the double sum is bounded\Yyy
by definition. For the second double sum, the inner sum h&%ﬁTOR)‘l@t —Zt)‘ X
bounded using the inductive hypothesis. The outer sum scales this bouxdolyydefini-
tion. Hence the second double sum is bounded byt +A) 16, +(1+A)*=1—1). Finally,
we deal with the third double sum as follows. We first repldé@OR)~'B,(UTOR) by
W,,, and note thalz - W,, = A,, R. SinceA,, is entry-wise nonnegative by definition,

is

A7), < 1T A,,|7], where|v] denotes element-wise absolute value. Also note that
IS, Ay ld) = ILT|9] = 1T |5] = ||7],. Using this result withi = R(UTOR) (b, —
b;) in the third double sum above, the inductive hypothesis bounds the double sum by
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(1+A)~16, + (1+A)*=! —1. Combining these three bounds gives us the required result:
P LT
> |r@or) (5.7

SA+FA(L+A) TS+ +A) T D +A+A) +(14+A)T -1
=A+(1+A)((1+A)16 +(1+A)01—1)
=A+(1+A)G+(1+A)-1-A

=(1+A)6+(1+A)—1

thus completing the induction. O

The following lemma bounds the effect of errors in the normalizer

Lemma 24 [Modification of HKZ Lemma 12] Assumeg; < o(P»1)/3. Then for any,

2

T1:t

Prlai] — Prlaia]| < (1+6.0)(1+6)(1+A) —1

PROOF First note that the upper bound eny along with Lemma&1, ensure thactrk(ﬁTOR) >
0 and so((?TOR) is invertible. The LHS above can be decomposed into three sums that
are dealt with separately:

)

> [Prlesd] - Prlewd| = 3 [PLBus b — L Buis b

T1:t T1:t

= /b\oroézt:lgl - bl—oéxt:lgl

< S (bso — boo) (UTOR)(UTOR) ' B, by

+3 ‘(Boo b ) (UTOR)(UTOR) ™ (B,, b1 — Ba,,b1)

+3 ‘EL(ﬁTOR)(ﬁTOR)‘l(Extﬁl - Em?;l)‘

The first sum can be bounded as follows, usingders inequality and bounds from
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Lemma22:

3 ‘ )'(UTOR)(TTOR) " Bybi| < Y H ({070)T )HOO HR((AJTOR)‘IEME‘ 1

T1:t T1:t

<D oo [ Ana

x1:t

= Z Joo Pr[z1.4]

T1:t

The second sum can be bounded also usialgiéts, as well as the bound in Lema

Z ‘ UTOR>(UTOR) (Extﬂgl - Emt;lgl)

T1:t

<H (T70) (b — b H HR (UTOR)"Y (B, by — By, 1)

1

< 0o (1 +A)'o + (1+A) —1)

The third sum again uses Lemia

S \’5;(ﬁTOR)(ﬁTOR)—I(Ema ~ B =3 (IT R{OTOR)"\(B,, b1 — B,,.b1)

T1:t T1:t

R(UTOR) " (Buybi — Buwbr)
1

<(1+A)'0 4+ (1+A) —
Adding these three sums gives us:

Pr[zy,] — ﬁ[xu] <o + 0o (T +A) S + (1 +A) — 1)+ (14+ A6+ (1+ A) —

2

T1:t

<o+ (T4 00)(L+ A6 + (1 4+ A) —1)

which is the required bound. O

PROOF (Theorem?). AssumeN ande as in the theorem statement:
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e = 01(OR) oy (Pay e/ (4tVE)

t2 k k- no(e)
N>C- -+ Uk(OR)QUk(PM)Q) +log(1/n)

=7 e (ak(om%k(zﬂm)

First note that
Prlzi,] — Pr[zy,]

>

T1:t
since it is thelL; difference between two stochastic vectors. Therefore, the theorem is
vacuous fore > 2. Hence we can assume

<2

e<1

in the proof and let the consta@t absorb the factot difference due to thé/e* term in
the expression folN.

The proof has three steps. We first list these steps then prove them below.

First step for a suitable constartt, the following sampling error bounds follow from
Lemmals:

e, < min (.05 (3/8) - 04(Pas) - €,.05 - (V/3/2) - o(OR) - (1/vk) - e> (A.14a)
21 < min (105 (1/8) - 04(Po)” - (¢/5), 01+ (v3/8) - 04 (OR) - 03P )? - (1/ (1K) - )

(A.14b)
D e300 <039 (3V3/8) - 04 (OR) - 04 (Pay) - (1/(tVE)) - € (A.14c)
Second stepLemma?22 together with equationg\(14) imply:

0oo < .05€ (A.15a)
o1 < .05¢e (A.15b)
A < 0.4e/t (A.15c)

Third step By LemmaZ24, equationsA.15) and the inequality
(1+(a/t))! <1+2a fora<1/2 (A.16)
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we get the theorem statement.

Proof of first stepNote that for any value of matrik; ;, we can upper-boung, (- ;)
by 1:

ok (Po1) < 01(Pay)

= rn|ax HP2,1:EH2

||35|2:1
" n 2 1/2
= Inax Z Z[PQ,l]ijxi
lell.=1 \ =\ &
< max Z[Pm]ijxi (by norm inequality)
2= =1
<> D U[Paaliyl (| < Lsince||z|, = 1)
j=1 i=1
— Z Z[Pm],»j (by non-negativity ofP; ;)
j=1 i=1

=1 (by definition)

Similarly, for any column-stochastic observation probability matriwe can bound(OR)
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by Vk. First see that, (0) < v/m:

01(0) = max |Oz]],

m n 1/2

= max, (Z > (0 )
m 1/2

< max (ZZO?J) (lzll, =1= |z < 1)
=1 =1

m 1/2
< (Z(Z Oij)2> (by triangle inequality)

m 1/2
< (Z 12> (by definition ofO)

Now the bound o, (OR) follows from Condition5i.e.o,(OR) < \/k/m:

0,(OR) = min ||ORz|,

lzll,=1

< 0], - Ir|11n |Rx|, (by norm consistency)

]l ;=1

m k
v/m min J DD (Ryw;)? (Al = 01(A) for any matrixA)

=1
||33H2 i=1 j=1

Assume the'" column of R obeys Conditiorb for somel < ¢ < k. Also assume = e,
the ¢ column of thek x k identity matrix, which obeys the constraift||, = 1. Then
every component of the inner sum is zero except whene, and themin expression can
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only get larger:

o(OR) < v, | S R2
=1

= \/m ||R[7 C]”z
< vmy/k/m
= Vk

hence proving that,(OR) < V/k.

Now we begin the proof with the case. Choosed@ that satisfies all previous bounds
and also obey$\/C/4) - 0.05 - (3/8) > 1.

61 < /1/N(v/In(3/n) +1) (by Lemmal8) (A.17)
< /1/N(2y/In(3/n)) (since\/In(3/n) > vIn3 > 1) (A.18)

Now, plugging in the assumed value &t

2¢(01,(Po1)’ 0k (OR)) In(3/1n)

(A.19)
t\/Ck(l + n0(€>0'k(P271)2) 11’1(1/7])

€1 <

Any substitutions that increase the right hand side of the above inequality preserve the

inequality. We now drop the additiviein the denominator, replacg/In(3/n)/In(1/n) by
2 since it is at most/In 3, and drop the factors \/n(s) from the denominator.

401 (OR) o (Pyy) e
€1 <
V Cl{;o’k(PQJ)

4. [ak(OR) /\/ﬂ [ow(Pos)] - €

(A.20)

< —— min (4 - 0x(Py1) - €,4- 04 (OR) - 1/Vk - €> (. both [ak(OR)/\/E} and[oy(Pe1)] are< 1)

Ve

= %min (0.05 -3/8 - 04(Pay) - €,0.05 - V3/2 - 0, (OR) - 1/Vk - 6)
(for ¢’ = ¥ .0.05 - 3/8)

— min (0.05 :3/8- 04(Py1) - €,0.05-v/3/2 - o1 (OR) - 1/Vk - e) (- C' > 1)
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Hence proving the required bound gt

Next we prove the,; case. Choose @ that satisfies all previous bounds also obeys
(v/C/4)-0.01 - (+/3/8) > 1. Note that, since the bound eg, in Lemmal8is the same
as fore;, we can start with the analogue of equatiénl(©):

2¢(0(Py1)’0%(OR)) In(3/7n)
1/ CR(1 + no(e)on(Po)?) | /M)

€21 >

We now drop the additive, (¢)oy (P,1)? in the denominator, again replagén(3/7)/ In(1/7)
by 2 since it is at most/In 3, and drop the multiplicative factarfrom the denominator.

1 2
€2.1 S ﬁ'4~0’k<P2’1) O'k(OR)(l/\/E)E
L [Jk(PQJ)Q} . [O'k(OR)/\/E] ‘€

&

< Tmln (4 ox(Py1)’ e,4-0k(OR)-ak(P271)2-1/\/E-6> (. [ak(OR)/\/E] <1)

< é min (0.05 1/8 - 01(Pa1)? - €,0.01 - v/3/8 - 04 (OR) - o4(Py1)? - 1/VE - .g)
(for C" = (v/C/4) - 0.01 - (v/3/8))
< min (0.05 - 1/8 - 0x(Py1)? - €,0.01 - v/3/8 - 01(OR) - 04(Po1)* - 1/Vk - e) (sinceC’ > 1)

hence proving the bound eg;.

: 0.39-(3v/3/8)v/C
Finally for > €5, 1, assume&’ such thatz—16 NG

requirements od'. we first restate the bound from Lemmé&

> 1 in addition to previous

> € < min <\/j/N (\/ln?)/n—l— 1) + 2€(j ) +/1/N (\/ln3/77+ 1)

< Vno@)/N (VIn3fn+1) + 2e(nole)) + VI/N (vVind/n+1)
< /1/N <\/ln 3/n + 1) (no(2) +1) +2¢ (sincee(ng(c)) < €)

147



The first two terms are exactly as before, so we perform the same steps as in equa-
tions (A.17)-(A.20) except we do not drofy/nq(e), to get:

P 2
Z €3,2,1 S 40k(OR>Uk( 271) ¢ (TLQ(E) + 1) + 2e

C]Cno(g)O'k(Pg’l)
< 40, (OR)oy(Pyq)e .
— ty/Ckng(e)

(sincel + ng(e) < 2-np(e), and plugging ire)

< 04(OR) - 03(Py1) - tVE - €+ (8/\/5+ 1/2)

(2 - no(e)) + 204 (OR) o ( Py )e/4tVk

1 r _ 2:0.39-(3v3/8)VC
< 50.39 - (3v3/8) - 01(OR) - oy(P21) - tVk - ¢ (for C" = Ve )

< 0.39- (3V/3/8) - 04(OR) - 04(Py1) - tVk - € (sinceC’ > 1 by assumption)

Hence proving the required bound f®F €3, 1.

Proof of second stefsubstituting from equation(14) into ¢; in Lemma22:

51 S l \/E - €
2 Vk 3 V3 1
< ——————min| .05 —0.(P. 05— —
< J5on(OR) min ( 05 80k( ».1)€, .05 5 ak(OR)\/Ee>

(V3 VE
= .05€¢ - min (Tak(OR) o, (Pan), 1)

< .05¢
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Substituting from equatiomn(14) into d., in Lemma22:

€2,1 €1
0so < 4 : +
<0k(P271)2 30k(P2,1))

5 min<.05 - (1/8) - ox(Pas)? - (€/5),.01 - (vV/3/8) - 04 (OR) - o (P21)? - (1) (tVE)) - e)

" ok(Pay)

4 .
+ mmm(.% - (3/8) - ok (Py1) - €,.05 - (\/3/2) -0(OR) - (1/\/%) _ e)
< min(.OSe, 04-(v/3/8) -0, (OR) - (1/(tVk)) - 6)

+min<.05-(1/2)-6,.05 (2/V/3) - EP 3 (1/Vk) - )

.05¢(.01 + .5)
.05¢

IA A

Substituting from equation’(14) into A in Lemma22

Agi \/E ( €21 + ExEB,xJ)
Ok

3 ox(OR) (Py1)? " 30k(P2y)
8Vk . , o
S\/— (OR P m1n<.05 (1/8) - ok (Pa1)” - (€/5),.01- (v/3/8) - 01(OR) - 0 (Pyy)? - m)
1
30k<p271>°'39 (3V/3/8) - 01(OR) - ox(Po1) - (1/(tV/R)) - )

. Vk € ¢
= <m1n<.05 - (€/5) ViorOR) .01- Z) +0.39 - Z)

€ €
<.01--+4+0.39--
- tjL t

< 0.4e/t
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Proof of third stepBy Lemma24,

Pr[z1] — Priza]| < (1+6.)(1+6)(1+A) — 1

2.

T1:t

< (1+.05¢)(1 4+ .05¢)(1 + 0.4¢/t)" — 1 (by equationsA.15))

< (1+.05¢)(1 + .05¢)(1 +0.8¢) — 1 (by equation A.16), since0.4e < 1/2)
=1+ .05¢ + .05¢ + .05% + 0.8¢ + .04€* + .04¢* + (.05)% - .08¢* — 1
=.0002¢> 4 .0825¢* + 0.9¢

< (.0002 + .0825 4+ 0.9)e  (sincee < 1 by assumption)

= 0.9827¢

<€

This completes the proof of Theorein O

A.1.5 Proof of Theorem2 for Continuous Observations

For continuous observations, we use Kernel Density Estimation (KIDE)] fo model

the observation probability density function (PDF). We use a fraction of the training data
points as kernel centers, placing one multivariate Gaussian kernel at each pidiet.

KDE estimator of the observation PDF is a convex combination of these kernels; since
each kernel integrates to 1, this estimator also integratés t6DE theory [L09] tells

us that as the number of kernel centers and the number of samples go to infinity and the
kernel bandwidth goes to zero (at appropriate rates), the KDE estimator converges to the
observation PDF i, norm. The kernel density estimator is completely determined by the
normalized vector of kernel weights; therefore, if we can estimate this vector accurately,
our estimate will converge to the observation PDF as well.

Hence our goal is to predict the correct expected value of this normalized kernel vec-
tor given all past observations (or more precisely, given the appropriate sequence of past

We use a general elliptical covariance matrix, chosen by SVD: that is, we use a spherical covariance
after projecting onto the singular vectors and scaling by the square roots of the singular values.
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observations, or the appropriate indicative events/features). In the context of ThHgorem
joint probability estimates fot-length observation sequences are effectively the expecta-
tion of entries in &-dimensional tensor formed by the outer product ioidicator vectors.
When we move to KDE, we instead estimate the expected outer productethastic
vectors, namely, the normalized kernel weights at each time step. As long as the sum
of errors in estimating entries of this table goes to zero for any fixaslthe number of
samples increases, our estimated observation PDFs will have bounded error.

The only differences in the proof are as follows. In Lemiréa we observey; to be
stochastic vectors instead of indicator vectors; their expectation is still the true value of the
guantity we are trying to predicf; are also stochastic vectors in that proof. In the proof
of Proposition20, py is an arbitrary stochastic vector. Alsfl,¢; < |||, = 1 now instead
of being always equal to 1, and the same holdgfgk. Also ||p; — pill, < |p: — il = 1
(by triangle inequality). Besides these things, the above proof goes through as it is.

Note that in the continuous observation case, there are continuously many observable
operatord¥V, that can be computed. We compute one base operator for each kernel center,
and use convex combinations of these base operators to compute observable operators as
needed.

A.2 Learning with Ambiguous Observations: Example

When stacking observations, the modified, larfe; € R™" still has rank at most
since it can be written in the form,; = GTH for some matricess, H' € R™*™. For
example, ifn = 2 for an HMM with ambiguous observations, and we believe stacking
2 observations per timestep will yield a sufficiently informative observation, the new ob-
servation space will consist of all = n? = 4 possible tuples of single observations and
Py € R™**"* with each observatiohcorresponding to a tuple i, i, > of the original
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observations. Specifically,

Py1(4,i) = Pr(zg = jo, w3 = j1, @2 = t9, 01 = 41)

= Z PI‘(.CL’4 :jg,xg :jl,l’g :ig,xl :i17h4 = d,hg = C,hg = b,hl = CL)
a,b,c,d

= Z 0;,dT3:04, T 0izpT1a Oy aTa

a,b,c,d

= Z aj,ch,[ diag(w)@T]bﬂ- Whereﬁjﬁc = Z Ojngchjlc
b,c d

= P =0T diag(ﬂ)aT

Similarly, we can show thal; ., = GT'H' for some matrice&!, H' € R™ ™. The exact
formulae will differ for different choices of past and future observable statistics.

A.3 Synthetic Example RR-HMM Parameters

Example 1
0.3894 0.2371 0.3735 0.6000 0.2000 0.2000
T = 02371 04985 0.2644 O = | 0.2000 0.6000 0.2000 (A.21)
0.3735 0.2644 0.3621 0.2000 0.2000 0.6000
Example 2
0.6736 0.0051 0.1639 Lo s
T =1 0.0330 0.8203 0.2577 O = - '5]
0.2935 0.1746 0.5784 '
Example 3
0.7829 0.1036 0.0399 0.0736
o _ | 01036 0.4237 0.4262 0.0465 o_| 1010
1 0.0399 0.4262 0.4380 0.0959 1o 101

0.0736 0.0465 0.0959 0.7840
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A.4 Consistency Result for Learning with Indicative and
Characteristic Features

Here we proveconsistencyf the RR-HMM learning algorithm when handling arbitrary
continuous features of groups of observations, termeéitative featuregor the past and
characteristic featurefor the future. As before, the low-rank transition matrix is denoted
by T = RS. The observation probability model {3, which we think of as a "matrix”
whose first dimension is continuous (corresponding to observatigmasd whose second
dimension is number of states, so that "columns” are probability distributions. The sta-
tistics areW*, W, andW* (for past, present, and future), each of which we think of a
"matrix” whose first dimension is (number of statistics) and whose second is continuous
(corresponding to observations), so that "rows” are statistics that we cdllecheans the

5" row of W. The initial distribution over states, as beforey i@ vector of length number

of states). In this scenario, the quantitiést andP; . ; no longer contain probabilities

but ratherexpected valuesf singletons, pairs and triples tdatures For the special case

of features that are indicator variablesesents we recover the conventional case where
]31, P, 1, Ps .1 consist of probabilities, and our performance bounds hold in addition to the
consistency results which we show below for the general features case. In the derivation
below, we considef , ; to be a three-dimensionensorrather than a series of matrices,

for simplicity.

With this notation, we have the following expressions for, andP; . ; (see Deriva-
tions subsection below):

Py1 = (WPOR)(S diag(r)O'WF") (A.22)
Psar(s,4.) = (WPOR)(S diag(W;0)R)(S diag(r)O'W* ") (A.23)
(A.24)

FactoringP,; = UV, we know thatU has the same range (column spanpfas, so
U= WFOR)A
for some (square, invertible) matrix in the low-rank space. Assuming”OR has full
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column rank, and writing/* for the pseudo-inverse @f, we get

UtPyy = A™'S diag(m)O'WE ' (A.25)
Ut Pyai(cj,:) = AN(S diag(W,0)R)(S diag(m)O'W*") (A.26)

Assumings diag(ﬂ)O’WFT has full row rank, we then get

Bj = U+P37x,1(2,j, I)(UJFPQJ)JF = A71<S dlag(WjO)R)A

This is the analog of the original result about our learned observable operatprs:
is a similarity transform away frony diag(1V;O)R. However, these new "observable
operators” aren’t necessarily what we need for tracking, sifig® isn’'t necessarily a
probability distribution. It's possible that we can either come up with conditions under
which the new "observable operators” are really what we need for tracking, or some slight
modification of the statistics collected that makes them so.
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Derivations

Derivations forP, ;, P; . ; that also show them to be low-rank:

P, 1(2 k) = xt tk (T111))
// Tp, Te1 )t (0)th (Tp41)dTidTgy

//ZZP (he)T (g, By

ht hiya

O(zy, h)O(zpq1, hugr )t; () by (T441)dedzygs

= [ [ 30 S Rt R ) )

ht hiy1 2t

O, he)O(@eq1, hiy )t P(fft)tk (Te41)dwedas gy

=y </ZP (he)R(hy, 20)O (24, byt (xt)d:ct>
(/ Z S(2t, hig1)O(2441, ht+1)th(It+1)dxt+1)

hit1
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For P37$,1:

Pso.q1(i,5,k) = ~1) (xt)tk<xt+1>>

/ / / o1, Ty T ) (Le-1)t (@) (@41 )dwp 1 dd
///ZZZP (he—1)T(hi—1, )T (s, i)

hi—1 ht hggr
O(xt 1, e 1)O<xtuht)0(xt+laht+l) P(xt 1)t‘($t)t£($t+1)dxt 1dxedzs g

— [ [ [ S S Bl b, 1) s, i) R, ) )

hi—1 ht hgp1 zt—1 2t

O(@i—1, hi—1)O(2t, ) O(2 41, hpga )t P(fﬂt 1)t (l“t)th($t+1)d$t—1d$td$t+1

:ZZ (/Zp(htﬁR(htl,ztl)O(ﬂ?t 1 he )] () day 1)

Zt—1 2t hi—1

</ Z S(Zt—b ht)R<ht, Zt)O(,CEt, ht)tj(-Tt)dl't)
(/ Z S(2t, he1)O(w4 41, ht+1>t£($t+1)d$t+1>

hit1

A.5 Consistency Result for Learning PSRs

In this case, R and S don'’t exist in the true model, and there is no ndatibhere are only
observable operatorg59] which we will call M;, a normalization vectob,,, and from

these we can derive update vectofs= b! M;. Assume for now that the observation
features are single discrete observations, and that there is only a single action. The tests
(characteristic events) are assumed to be indicator functions of the next single observation
so the expected value of the test is the probability of seeing that observation. The histo-
ries (indicative events) similarly corresponds to the single previous observation, i.e. the
PSR/OOM is assumed to ldestep observable (seéd for a generalization of this proof

to general indicative and characteristic events, multiple control inputs and continuous ob-
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servations). Assumg j, k are the indices of observationg x;. 1, x;,» respectively. Let

denote the hidden state at timeP(z) denote the belief over, andz denote[ zP(z)dz.
For Ps:

Ps(i,5,k) = /P(z)P(:L’t =i|h=2)Pxy1=J | hi=2)P(xpp0 =k | 2431 = J, by = 2)

T T Miz TMj ]"J{Fj
= [ P(2) (b 2) b AR by T dz
¢ J b;rz
= / P(2)bi MjM;zd=
= by M; M,z

Similarly, for P,:
Py(i,j) = | P(2)P(xy=i|hy=2)P(xp1 =37 | he = 2)

P(2)b} M;zdz

——

Let B and M be matrices such that:

oo _—
B=| — b — and M= | ... Mz

nxk kxn

Then, we can write

P,=BM
Pg(l,j, Z) = BMJM

FactoringP, = UV, we know that/ has the same range (column spanfasso
U=BA
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for some (square, invertible) matrikin the low-rank space. Assumirig has full column
rank, and writingU " for the pseudo-inverse @éf, we get

UtPy=A"'M (A.27)
UtPs(:,j,:) = A" M;M (A.28)

AssumingM has full row rank, we then get

B, =U'R(:,4,)(UTP)t = A M; A

B, is a similarity transform away from/;, the OOM observable operator.
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